A quiver variety approach to root multiplicities
Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 163-174.

We present combinatorial upper bounds on dimensions of certain imaginary root spaces for symmetric Kac–Moody algebras. These come from the realization of the corresponding infinity-crystal using quiver varieties. The framework is general, but we only work out specifics in rank two. In that case we give explicit bounds. These turn out to be quite accurate, and in many cases exact, even for some fairly large roots.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.158
Classification: 17B67
Keywords: Kac–Moody algebra, quiver, crystal

Tingley, Peter 1

1 Loyola University Chicago Dept. of Mathematics and Statistics 1032 W. Sheridan Rd. Chicago, IL
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2021__4_1_163_0,
     author = {Tingley, Peter},
     title = {A quiver variety approach to root multiplicities},
     journal = {Algebraic Combinatorics},
     pages = {163--174},
     publisher = {MathOA foundation},
     volume = {4},
     number = {1},
     year = {2021},
     doi = {10.5802/alco.158},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.158/}
}
TY  - JOUR
AU  - Tingley, Peter
TI  - A quiver variety approach to root multiplicities
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 163
EP  - 174
VL  - 4
IS  - 1
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.158/
DO  - 10.5802/alco.158
LA  - en
ID  - ALCO_2021__4_1_163_0
ER  - 
%0 Journal Article
%A Tingley, Peter
%T A quiver variety approach to root multiplicities
%J Algebraic Combinatorics
%D 2021
%P 163-174
%V 4
%N 1
%I MathOA foundation
%U https://alco.centre-mersenne.org/articles/10.5802/alco.158/
%R 10.5802/alco.158
%G en
%F ALCO_2021__4_1_163_0
Tingley, Peter. A quiver variety approach to root multiplicities. Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 163-174. doi : 10.5802/alco.158. https://alco.centre-mersenne.org/articles/10.5802/alco.158/

[1] Baumann, Pierre; Kamnitzer, Joel; Tingley, Peter Affine Mirković–Vilonen polytopes, Publ. Math. Inst. Hautes Études Sci., Volume 120 (2014), pp. 113-205 | DOI | MR | Zbl

[2] Berenstein, Arkady; Zelevinsky, Andrei String bases for quantum groups of type A r , I. M. Gelfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 51-89 | DOI | MR | Zbl

[3] Berman, Stephen; Moody, Robert V. Lie algebra multiplicities, Proc. Amer. Math. Soc., Volume 76 (1979) no. 2, pp. 223-228 | DOI | MR | Zbl

[4] Brennan, Charlotte; Mavhungu, Simon Visits to level r by Dyck paths, Fund. Inform., Volume 117 (2012) no. 1-4, pp. 127-145 | MR | Zbl

[5] Brundan, Jonathan; Kleshchev, Alexander; McNamara, Peter J. Homological properties of finite-type Khovanov–Lauda–Rouquier algebras, Duke Math. J., Volume 163 (2014) no. 7, pp. 1353-1404 | DOI | MR | Zbl

[6] Carbone, Lisa; Freyn, Walter; Lee, Kyu-Hwan Dimensions of imaginary root spaces of hyperbolic Kac–Moody algebras, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics (Contemp. Math.), Volume 623, Amer. Math. Soc., Providence, RI, 2014, pp. 23-40 | DOI | MR | Zbl

[7] Feingold, Alex J. A hyperbolic GCM Lie algebra and the Fibonacci numbers, Proc. Amer. Math. Soc., Volume 80 (1980) no. 3, pp. 379-385 | DOI | MR | Zbl

[8] Feingold, Alex J.; Frenkel, Igor B. A hyperbolic Kac–Moody algebra and the theory of Siegel modular forms of genus 2, Math. Ann., Volume 263 (1983) no. 1, pp. 87-144 | DOI | MR | Zbl

[9] Feingold, Alex J.; Nicolai, Hermann Subalgebras of hyperbolic Kac–Moody algebras, Kac–Moody Lie algebras and related topics (Contemp. Math.), Volume 343, Amer. Math. Soc., Providence, RI, 2004, pp. 97-114 | DOI | MR | Zbl

[10] Frenkel, Igor B. Representations of Kac–Moody algebras and dual resonance models, Applications of group theory in physics and mathematical physics (Chicago, 1982) (Lectures in Appl. Math.), Volume 21, Amer. Math. Soc., Providence, RI, 1985, pp. 325-353 | MR | Zbl

[11] Fujita, Naoki; Oya, Hironori A comparison of Newton–Okounkov polytopes of Schubert varieties, J. Lond. Math. Soc. (2), Volume 96 (2017) no. 1, pp. 201-227 | DOI | MR | Zbl

[12] Geiss, Christof; Leclerc, Bernard; Schröer, Jan Quivers with relations for symmetrizable Cartan matrices IV: crystal graphs and semicanonical functions, Selecta Math. (N.S.), Volume 24 (2018) no. 4, pp. 3283-3348 | DOI | MR | Zbl

[13] Grossman, Howard D. Fun with lattice points, Scripta Math., Volume 16 (1950), pp. 207-212 | MR

[14] Hill, David; Melvin, George; Mondragon, Damien Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra, Volume 216 (2012) no. 5, pp. 1052-1079 | DOI | MR | Zbl

[15] Hong, Jin; Kang, Seok-Jin Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Society, Providence, RI, 2002, xviii+307 pages | DOI | MR | Zbl

[16] Judge, Jonathan (https://trac.sagemath.org/ticket/18000)

[17] Kac, Victor G. Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, xxii+400 pages | DOI | MR | Zbl

[18] Kac, Victor G.; Moody, Robert V.; Wakimoto, Minoru On E 10 , Differential geometrical methods in theoretical physics (Como, 1987) (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume 250, Kluwer Acad. Publ., Dordrecht, 1988, pp. 109-128 | MR

[19] Kang, Seok-Jin; Lee, Kyu-Hwan; Lee, Kyungyong A combinatorial approach to root multiplicities of rank 2 hyperbolic Kac–Moody algebras, Comm. Algebra, Volume 45 (2017) no. 11, pp. 4785-4800 | DOI | MR | Zbl

[20] Kang, Seok-Jin; Melville, Duncan J. Rank 2 symmetric hyperbolic Kac–Moody algebras, Nagoya Math. J., Volume 140 (1995), pp. 41-75 | DOI | MR | Zbl

[21] Kashiwara, Masaki On crystal bases, Representations of groups (Banff, AB, 1994) (CMS Conf. Proc.), Volume 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155-197 | MR | Zbl

[22] Kashiwara, Masaki; Saito, Yoshihisa Geometric construction of crystal bases, Duke Math. J., Volume 89 (1997) no. 1, pp. 9-36 | DOI | MR | Zbl

[23] Kleshchev, Alexander; Muth, Robert Imaginary Schur–Weyl duality, Mem. Amer. Math. Soc., Volume 245 (2017) no. 1157, p. xvii+83 | DOI | MR

[24] Kleshchev, Alexander; Ram, Arun Representations of Khovanov–Lauda–Rouquier algebras and combinatorics of Lyndon words, Math. Ann., Volume 349 (2011) no. 4, pp. 943-975 | DOI | MR | Zbl

[25] Kleshchev, Alexander S. Cuspidal systems for affine Khovanov–Lauda–Rouquier algebras, Math. Z., Volume 276 (2014) no. 3-4, pp. 691-726 | DOI | MR | Zbl

[26] Littelmann, Peter Cones, crystals, and patterns, Transform. Groups, Volume 3 (1998) no. 2, pp. 145-179 | DOI | MR | Zbl

[27] Lusztig, George Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc., Volume 4 (1991) no. 2, pp. 365-421 | DOI | MR | Zbl

[28] McNamara, Peter J. Representations of Khovanov–Lauda–Rouquier algebras III: symmetric affine type, Math. Z., Volume 287 (2017) no. 1-2, pp. 243-286 | DOI | MR | Zbl

[29] Nakashima, Toshiki; Zelevinsky, Andrei Polyhedral realizations of crystal bases for quantized Kac–Moody algebras, Adv. Math., Volume 131 (1997) no. 1, pp. 253-278 | DOI | MR | Zbl

[30] Nandakumar, Vinoth; Tingley, Peter Quiver varieties and crystals in symmetrizable type via modulated graphs, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 159-180 | DOI | MR | Zbl

[31] Peterson, Dale H. Freudenthal-type formulas for root and weight multiplicities (unpublished)

[32] Rudakov, Alexei Stability for an abelian category, J. Algebra, Volume 197 (1997) no. 1, pp. 231-245 | DOI | MR | Zbl

[33] Savage, Alistair A geometric construction of crystal graphs using quiver varieties: extension to the non-simply laced case, Infinite-dimensional aspects of representation theory and applications (Contemp. Math.), Volume 392, Amer. Math. Soc., Providence, RI, 2005, pp. 133-154 | DOI | MR | Zbl

[34] Tingley, Peter; Colin, Williams Python code (http://webpages.math.luc.edu/~ptingley/lecturenotes/RootMultiplicityCode.py)

[35] Tingley, Peter; Webster, Ben Mirković–Vilonen polytopes and Khovanov–Lauda–Rouquier algebras, Compos. Math., Volume 152 (2016) no. 8, pp. 1648-1696 | DOI | MR | Zbl

Cited by Sources: