In this paper we study the interplay between the operation of circuit-hyperplane relaxation and the Kazhdan–Lusztig theory of matroids. We obtain a family of polynomials, not depending on the matroids but only on their ranks, that relate the Kazhdan–Lusztig, the inverse Kazhdan–Lusztig and the -polynomial of each matroid with those of its relaxations. As an application of our main theorem, we prove that all matroids having a free basis are non-degenerate. Additionally, we obtain bounds and explicit formulas for all the coefficients of the Kazhdan–Lusztig, inverse Kazhdan–Lusztig and -polynomial of all sparse paving matroids.
Revised:
Accepted:
Published online:
Keywords: Kazhdan–Lusztig polynomials of matroids, Circuit-hyperplane relaxations, Geometric lattices, Real-rooted polynomials
Ferroni, Luis 1; Vecchi, Lorenzo 2
@article{ALCO_2022__5_4_745_0, author = {Ferroni, Luis and Vecchi, Lorenzo}, title = {Matroid relaxations and {Kazhdan{\textendash}Lusztig} non-degeneracy}, journal = {Algebraic Combinatorics}, pages = {745--769}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {4}, year = {2022}, doi = {10.5802/alco.244}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.244/} }
TY - JOUR AU - Ferroni, Luis AU - Vecchi, Lorenzo TI - Matroid relaxations and Kazhdan–Lusztig non-degeneracy JO - Algebraic Combinatorics PY - 2022 SP - 745 EP - 769 VL - 5 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.244/ DO - 10.5802/alco.244 LA - en ID - ALCO_2022__5_4_745_0 ER -
%0 Journal Article %A Ferroni, Luis %A Vecchi, Lorenzo %T Matroid relaxations and Kazhdan–Lusztig non-degeneracy %J Algebraic Combinatorics %D 2022 %P 745-769 %V 5 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.244/ %R 10.5802/alco.244 %G en %F ALCO_2022__5_4_745_0
Ferroni, Luis; Vecchi, Lorenzo. Matroid relaxations and Kazhdan–Lusztig non-degeneracy. Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 745-769. doi : 10.5802/alco.244. https://alco.centre-mersenne.org/articles/10.5802/alco.244/
[1] Valuations for matroid polytope subdivisions, Canad. J. Math., Volume 62 (2010) no. 6, pp. 1228-1245 | DOI | MR | Zbl
[2] Valuations and the Hopf Monoid of Generalized Permutahedra, Int. Math. Res. Not. IMRN (2022), Paper no. rnab355, 76 pages | DOI
[3] On the number of matroids, Combinatorica, Volume 35 (2015) no. 3, pp. 253-277 | DOI | MR | Zbl
[4] Singular Hodge theory for combinatorial geometries (2020) | arXiv
[5] Twisted incidence algebras and Kazhdan-Lusztig-Stanley functions, Adv. Math., Volume 148 (1999) no. 1, pp. 44-74 | DOI | MR | Zbl
[6] Valuative invariants for polymatroids, Adv. Math., Volume 225 (2010) no. 4, pp. 1840-1892 | DOI | MR
[7] The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl
[8] The Hodge theory of Soergel bimodules, Ann. of Math. (2), Volume 180 (2014) no. 3, pp. 1089-1136 | DOI | MR | Zbl
[9] On the Ehrhart Polynomial of Minimal Matroids, Discrete Comput. Geom. (2021), 19 pages | DOI | MR | Zbl
[10] Matroids are not Ehrhart positive, Adv. Math., Volume 402 (2022), Paper no. 108337, 27 pages | DOI | MR | Zbl
[11] The Kazhdan-Lusztig polynomials of uniform matroids, Adv. in Appl. Math., Volume 122 (2021), Paper no. 102117, 24 pages | DOI | MR | Zbl
[12] The inverse Kazhdan-Lusztig polynomial of a matroid, J. Combin. Theory Ser. B, Volume 151 (2021), pp. 375-392 | DOI | MR | Zbl
[13] Kazhdan-Lusztig polynomials of matroids: a survey of results and conjectures, Sém. Lothar. Combin., Volume 78B (2017), p. Art. 80, 12 pages | MR | Zbl
[14] Kazhdan-Lusztig polynomials of thagomizer matroids, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. 3.12, 10 pages | MR | Zbl
[15] The On-Line Encyclopedia of Integer Sequences, http://oeis.org, 2022
[16] A new upper bound for error-correcting codes, IRE Trans., Volume IT-8 (1962), pp. 203-207 | DOI | MR | Zbl
[17] A Combinatorial Formula for Kazhdan-Lusztig Polynomials of Sparse Paving Matroids, Electron. J. Combin., Volume 28 (2021) no. 4, Paper no. 4.44, 29 pages | DOI | MR | Zbl
[18] Kazhdan-Lusztig polynomials of fan matroids, wheel matroids and whirl matroids (2018) | arXiv
[19] On the asymptotic proportion of connected matroids, European J. Combin., Volume 32 (2011) no. 6, pp. 882-890 | DOI | MR | Zbl
[20] On the structure of the -vector of a paving matroid, European J. Combin., Volume 33 (2012) no. 8, pp. 1787-1799 | DOI | MR | Zbl
[21] On matroids with many common bases, Discrete Math., Volume 203 (1999) no. 1-3, pp. 195-205 | DOI | MR | Zbl
[22] Almost all matroids are nonrepresentable, Bull. Lond. Math. Soc., Volume 50 (2018) no. 2, pp. 245-248 | DOI | MR | Zbl
[23] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR
[24] Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups, Represent. Theory, Volume 3 (1999), pp. 90-104 | DOI | MR | Zbl
[25] Intersection cohomology of the symmetric reciprocal plane, J. Algebraic Combin., Volume 43 (2016) no. 1, pp. 129-138 | DOI | MR | Zbl
[26] The -polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.26, 21 pages | MR | Zbl
[27] SageMath, the Sage Mathematics Software System (Version 9.1) (2020) https://www.sagemath.org | DOI
[28] Subdivisions and local -vectors, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | DOI | MR | Zbl
[29] Alpha-balanced graphs and matrices and -representability of matroids, J. Combin. Theory Ser. B, Volume 32 (1982) no. 2, pp. 112-139 | DOI | MR | Zbl
Cited by Sources: