Fully inhomogeneous spin Hall–Littlewood symmetric rational functions are multiparameter deformations of the classical Hall–Littlewood symmetric polynomials and can be viewed as partition functions in higher spin six vertex models.
We obtain a refined Littlewood identity expressing a weighted sum of ’s over all signatures with even multiplicities as a certain Pfaffian. This Pfaffian can be derived as a partition function of the six vertex model in a triangle with suitably decorated domain wall boundary conditions. The proof is based on the Yang–Baxter equation.
Revised:
Accepted:
Published online:
Keywords: Littlewood identity, symmetric functions, six vertex model
Gavrilova, Svetlana 1
@article{ALCO_2023__6_1_37_0, author = {Gavrilova, Svetlana}, title = {Refined {Littlewood} identity for spin {Hall{\textendash}Littlewood} symmetric rational functions}, journal = {Algebraic Combinatorics}, pages = {37--51}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {1}, year = {2023}, doi = {10.5802/alco.251}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.251/} }
TY - JOUR AU - Gavrilova, Svetlana TI - Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions JO - Algebraic Combinatorics PY - 2023 SP - 37 EP - 51 VL - 6 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.251/ DO - 10.5802/alco.251 LA - en ID - ALCO_2023__6_1_37_0 ER -
%0 Journal Article %A Gavrilova, Svetlana %T Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions %J Algebraic Combinatorics %D 2023 %P 37-51 %V 6 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.251/ %R 10.5802/alco.251 %G en %F ALCO_2023__6_1_37_0
Gavrilova, Svetlana. Refined Littlewood identity for spin Hall–Littlewood symmetric rational functions. Algebraic Combinatorics, Volume 6 (2023) no. 1, pp. 37-51. doi : 10.5802/alco.251. https://alco.centre-mersenne.org/articles/10.5802/alco.251/
[1] Half-space Macdonald processes, Forum Math. Pi, Volume 8 (2020), Paper no. e11, 150 pages | MR | Zbl
[2] Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process, Duke Math. J., Volume 167 (2018) no. 13, pp. 2457-2529 | MR | Zbl
[3] Point-to-line polymers and orthogonal Whittaker functions, Trans. Am. Math. Soc., Volume 371 (2019) no. 12, pp. 8339-8379 | DOI | MR | Zbl
[4] On a family of symmetric rational functions, Adv. Math., Volume 306 (2017), pp. 973-1018 | DOI | MR | Zbl
[5] Stochastic higher spin six vertex model and Macdonald measures, J. Math. Phys., Volume 59 (2018) no. 2, Paper no. 023301, 17 pages | MR | Zbl
[6] Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz, Commun. Math. Phys., Volume 339 (2015) no. 3, pp. 1167-1245 | DOI | MR | Zbl
[7] Higher spin six vertex model and symmetric rational functions, Sel. Math., New Ser., Volume 24 (2018) no. 2, pp. 751-874 | DOI | MR | Zbl
[8] Stable spin Hall–Littlewood symmetric functions, combinatorial identities, and half-space Yang–Baxter random field, 2021 | arXiv
[9] Stochastic higher spin vertex models on the line, Commun. Math. Phys., Volume 343 (2016) no. 2, pp. 651-700 | DOI | MR | Zbl
[10] Partition function of a six-vertex model in a finite volume, Dokl. Akad. Nauk SSSR, Volume 297 (1987) no. 2, pp. 331-333 | MR
[11] -difference raising operators for Macdonald polynomials and the integrality of transition coefficients, Algebraic methods and -special functions, Providence, RI: American Mathematical Society, 1999, pp. 227-243 | DOI | Zbl
[12] Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993, xx+555 pages | DOI | MR
[13] Symmetry classes of alternating-sign matrices under one roof, Ann. Math. (2), Volume 156 (2002) no. 3, pp. 835-866 | DOI | MR | Zbl
[14] Symmetric functions and Hall polynomials, Oxford: Clarendon Press, 1995, x + 475 pages | Zbl
[15] Refined Cauchy identity for spin Hall-Littlewood symmetric rational functions, J. Combin. Theory Ser. A, Volume 184 (2021), Paper no. 105519, 50 pages | MR | Zbl
[16] On the integrability of zero-range chipping models with factorized steady states, J. Phys. A, Volume 46 (2013) no. 46, Paper no. 465205, 25 pages | DOI | MR | Zbl
[17] Bounded Littlewood identities, Mem. Amer. Math. Soc., Volume 270 (2021) no. 1317, p. vii+115 | MR | Zbl
[18] Rogers-Szegő polynomials and Hall-Littlewood symmetric functions, J. Algebra, Volume 303 (2006) no. 2, pp. 810-830 | DOI | Zbl
[19] Bisymmetric functions, Macdonald polynomials and basic hypergeometric series, Compos. Math., Volume 144 (2008) no. 2, pp. 271-303 | DOI | MR | Zbl
[20] Refined Cauchy/Littlewood identities and six-vertex model partition functions. III. Deformed bosons, Adv. Math., Volume 299 (2016), pp. 543-600 | DOI | MR | Zbl
Cited by Sources: