Let . In their 1975 paper, Carlitz, Scoville and Vaughan provided a combinatorial interpretation of the coefficients in the power series . They proved that counts the number of pairs of permutations of the th symmetric group with no common ascent. This paper gives a combinatorial interpretation of a natural -analogue of by studying the top homology of the Segre product of the subspace lattice with itself. We also derive an equation that is analogous to a well-known symmetric function identity: , which then generalizes our -analogue to a symmetric group representation result.
Revised:
Accepted:
Published online:
Keywords: algebraic combinatorics, poset homology, shellability, symmetric functions, symmetric group representation
Li, Yifei 1
@article{ALCO_2023__6_2_457_0, author = {Li, Yifei}, title = {A $q$-analogue of a result of {Carlitz,} {Scoville} and {Vaughan} via the homology of posets}, journal = {Algebraic Combinatorics}, pages = {457--469}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.265}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.265/} }
TY - JOUR AU - Li, Yifei TI - A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets JO - Algebraic Combinatorics PY - 2023 SP - 457 EP - 469 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.265/ DO - 10.5802/alco.265 LA - en ID - ALCO_2023__6_2_457_0 ER -
%0 Journal Article %A Li, Yifei %T A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets %J Algebraic Combinatorics %D 2023 %P 457-469 %V 6 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.265/ %R 10.5802/alco.265 %G en %F ALCO_2023__6_2_457_0
Li, Yifei. A $q$-analogue of a result of Carlitz, Scoville and Vaughan via the homology of posets. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 457-469. doi : 10.5802/alco.265. https://alco.centre-mersenne.org/articles/10.5802/alco.265/
[1] Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc., Volume 260 (1980) no. 1, pp. 159-183 | DOI | MR | Zbl
[2] Segre and Rees products of posets, with ring-theoretic applications, J. Pure Appl. Algebra, Volume 198 (2005) no. 1-3, pp. 43-55 | DOI | MR | Zbl
[3] On lexicographically shellable posets, Trans. Amer. Math. Soc., Volume 277 (1983) no. 1, pp. 323-341 | DOI | MR | Zbl
[4] Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., Volume 348 (1996) no. 4, pp. 1299-1327 | DOI | MR | Zbl
[5] Enumeration of pairs of permutations, Discrete Math., Volume 14 (1976) no. 3, pp. 215-239 | DOI | MR | Zbl
[6] Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004, xxvi+428 pages | DOI
[7] The symmetric group, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI
[8] On -analogues of partially ordered sets, J. Combin. Theory Ser. A, Volume 72 (1995) no. 1, pp. 135-183 | DOI | MR | Zbl
[9] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012, xiv+626 pages
[10] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI
[11] Applications of the Hopf trace formula to computing homology representations, Jerusalem combinatorics ’93 (Contemp. Math.), Volume 178, Amer. Math. Soc., Providence, RI, 1994, pp. 277-309 | DOI | MR | Zbl
[12] The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice, Adv. Math., Volume 104 (1994) no. 2, pp. 225-296 | DOI | MR | Zbl
[13] Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Math. Ser.), Volume 13, Amer. Math. Soc., Providence, RI, 2007, pp. 497-615 | DOI | MR | Zbl
[14] Whitney homology of semipure shellable posets, J. Algebraic Combin., Volume 9 (1999) no. 2, pp. 173-207 | DOI | MR | Zbl
Cited by Sources: