Let be a positive integer, and let be the “staircase” partition of size . The Saxl conjecture asserts that every irreducible representation of the symmetric group appears as a subrepresentation of the tensor square . In this short note we give two proofs that every irreducible representation of appears in the tensor cube .
Revised:
Accepted:
Published online:
Keywords: Saxl conjecture, symmetric groups
Harman, Nate 1; Ryba, Christopher 2
@article{ALCO_2023__6_2_507_0, author = {Harman, Nate and Ryba, Christopher}, title = {A tensor-cube version of the {Saxl} conjecture}, journal = {Algebraic Combinatorics}, pages = {507--511}, publisher = {The Combinatorics Consortium}, volume = {6}, number = {2}, year = {2023}, doi = {10.5802/alco.267}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.267/} }
TY - JOUR AU - Harman, Nate AU - Ryba, Christopher TI - A tensor-cube version of the Saxl conjecture JO - Algebraic Combinatorics PY - 2023 SP - 507 EP - 511 VL - 6 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.267/ DO - 10.5802/alco.267 LA - en ID - ALCO_2023__6_2_507_0 ER -
%0 Journal Article %A Harman, Nate %A Ryba, Christopher %T A tensor-cube version of the Saxl conjecture %J Algebraic Combinatorics %D 2023 %P 507-511 %V 6 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.267/ %R 10.5802/alco.267 %G en %F ALCO_2023__6_2_507_0
Harman, Nate; Ryba, Christopher. A tensor-cube version of the Saxl conjecture. Algebraic Combinatorics, Volume 6 (2023) no. 2, pp. 507-511. doi : 10.5802/alco.267. https://alco.centre-mersenne.org/articles/10.5802/alco.267/
[1] Kronecker positivity and 2-modular representation theory, Trans. Amer. Math. Soc. Ser. B, Volume 8 (2021), pp. 1024-1055 | DOI | MR | Zbl
[2] Splitting Kronecker squares, 2-decomposition numbers, Catalan Combinatorics, and the Saxl conjecture, preprint, 2022 | arXiv
[3] Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 4, pp. 908-930 | DOI | MR | Zbl
[4] The Saxl conjecture and the dominance order, Discrete Math., Volume 338 (2015) no. 11, pp. 1970-1975 | DOI | MR | Zbl
[5] The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981, xxviii+510 pages
[6] Saxl conjecture for triple hooks, Discrete Math., Volume 344 (2021) no. 6, Paper no. 112340, 19 pages | MR | Zbl
[7] The Saxl conjecture for fourth powers via the semigroup property, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 33-80 | MR | Zbl
[8] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages
[9] Kronecker products, characters, partitions, and the tensor square conjectures, Adv. Math., Volume 288 (2016), pp. 702-731 | MR | Zbl
[10] Covering With Tensor Products and Powers, preprint, 2020 | arXiv
[11] Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages (Translated from the second French edition by Leonard L. Scott) | DOI | Zbl
Cited by Sources: