Geometric vertex decomposition and liaison for toric ideals of graphs
Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 965-997.

Geometric vertex decomposability for polynomial ideals is an ideal-theoretic generalization of vertex decomposability for simplicial complexes. Indeed, a homogeneous geometrically vertex decomposable ideal is radical and Cohen-Macaulay, and is in the Gorenstein liaison class of a complete intersection (glicci).

In this paper, we initiate an investigation into when the toric ideal I G of a finite simple graph G is geometrically vertex decomposable. We first show how geometric vertex decomposability behaves under tensor products, which allows us to restrict to connected graphs. We then describe a graph operation that preserves geometric vertex decomposability, thus allowing us to build many graphs whose corresponding toric ideals are geometrically vertex decomposable. Using work of Constantinescu and Gorla, we prove that toric ideals of bipartite graphs are geometrically vertex decomposable. We also propose a conjecture that all toric ideals of graphs with a square-free degeneration with respect to a lexicographic order are geometrically vertex decomposable. As evidence, we prove the conjecture in the case that the universal Gröbner basis of I G is a set of quadratic binomials. We also prove that some other families of graphs have the property that I G is glicci.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.295
Classification: 13P10, 14M25, 05E40, 13C04
Keywords: geometric vertex decomposition, toric ideals of graphs, liaison

Cummings, Mike 1; Da Silva, Sergio 2; Rajchgot, Jenna 1; Van Tuyl, Adam 1

1 McMaster University Department of Mathematics and Statistics 1280 Main St W Hamilton ON CAN L8S4L8
2 Virginia State University Department of Mathematics and Economics 1 Hayden Dr Petersburg VA USA 23806
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2023__6_4_965_0,
     author = {Cummings, Mike and Da Silva, Sergio and Rajchgot, Jenna and Van Tuyl, Adam},
     title = {Geometric vertex decomposition and liaison for toric ideals of graphs},
     journal = {Algebraic Combinatorics},
     pages = {965--997},
     publisher = {The Combinatorics Consortium},
     volume = {6},
     number = {4},
     year = {2023},
     doi = {10.5802/alco.295},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.295/}
}
TY  - JOUR
AU  - Cummings, Mike
AU  - Da Silva, Sergio
AU  - Rajchgot, Jenna
AU  - Van Tuyl, Adam
TI  - Geometric vertex decomposition and liaison for toric ideals of graphs
JO  - Algebraic Combinatorics
PY  - 2023
SP  - 965
EP  - 997
VL  - 6
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.295/
DO  - 10.5802/alco.295
LA  - en
ID  - ALCO_2023__6_4_965_0
ER  - 
%0 Journal Article
%A Cummings, Mike
%A Da Silva, Sergio
%A Rajchgot, Jenna
%A Van Tuyl, Adam
%T Geometric vertex decomposition and liaison for toric ideals of graphs
%J Algebraic Combinatorics
%D 2023
%P 965-997
%V 6
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.295/
%R 10.5802/alco.295
%G en
%F ALCO_2023__6_4_965_0
Cummings, Mike; Da Silva, Sergio; Rajchgot, Jenna; Van Tuyl, Adam. Geometric vertex decomposition and liaison for toric ideals of graphs. Algebraic Combinatorics, Volume 6 (2023) no. 4, pp. 965-997. doi : 10.5802/alco.295. https://alco.centre-mersenne.org/articles/10.5802/alco.295/

[1] Biermann, Jennifer; O’Keefe, Augustine; Van Tuyl, Adam Bounds on the regularity of toric ideals of graphs, Adv. in Appl. Math., Volume 85 (2017), pp. 84-102 | DOI | MR | Zbl

[2] Björner, Anders; Wachs, Michelle L. Shellable Nonpure Complexes and Posets. II, Trans. Amer. Math. Soc., Volume 349 (1997) no. 10, pp. 3945-3975 | DOI | MR | Zbl

[3] Constantinescu, Alexandru; Gorla, Elisa Gorenstein liaison for toric ideals of graphs, J. Algebra, Volume 502 (2018), pp. 249-261 | DOI | MR | Zbl

[4] Corso, Alberto; Nagel, Uwe Monomial and Toric Ideals Associated to Ferrers Graphs, Trans. Amer. Math. Soc, Volume 361 (2009) no. 3, pp. 1371-1395 | DOI | MR | Zbl

[5] Cox, David A.; Little, John; O’Shea, Donal Ideals, varieties, and algorithms, Springer Cham, 2015 | DOI

[6] Da Silva, Sergio; Harada, Megumi Geometric vertex decomposition, Gröbner bases, and Frobenius splittings for regular nilpotent Hessenberg varieties, 2022 (forthcoming, Transform. Groups) | arXiv

[7] D’Alí, Alessio Toric ideals associated with gap-free graphs, J. Pure Appl. Algebra, Volume 219 (2015) no. 9, pp. 3862-3872 | DOI | MR | Zbl

[8] Ene, Viviana; Herzog, Jürgen Gröbner Bases in Commutative Algebra, Graduate studies in mathematics, American Mathematical Soc., 2012

[9] Favacchio, Giuseppe; Hofscheier, Johannes; Keiper, Graham; Van Tuyl, Adam Splittings of toric ideals, J. Algebra, Volume 574 (2021), pp. 409-433 | DOI | MR | Zbl

[10] Galetto, Federico; Hofscheier, Johannes; Keiper, Graham; Kohne, Craig; Paczka, Miguel Eduardo Uribe; Van Tuyl, Adam Betti numbers of toric ideals of graphs: A case study, J. Algebra Appl., Volume 18 (2019) no. 12, Paper no. 1950226, 12 pages | DOI | MR | Zbl

[11] Gitler, Isidoro; Reyes, Enrique; Villarreal, Rafael H. Ring graphs and complete intersection toric ideals, Discrete Math., Volume 310 (2010) no. 3, pp. 430-441 | DOI | MR | Zbl

[12] Gorla, E.; Migliore, J.C.; Nagel, U. Gröbner bases via linkage, J. Algebra, Volume 384 (2013), pp. 110-134 | DOI | Zbl

[13] Grayson, Daniel R.; Stillman, Michael E. Macaulay2, a software system for research in algebraic geometry https://math.uiuc.edu/Macaulay2/

[14] Greif, Zachary; McCullough, Jason Green-Lazarsfeld condition for toric edge ideals of bipartite graphs, J. Algebra, Volume 562 (2020), pp. 1-27 | DOI | MR | Zbl

[15] Hà, Huy Tài; Nguyen, Hop Dang; Trung, Ngo Viet; Trung, Tran Nam Symbolic powers of sums of ideals, Math. Z., Volume 294 (2020) no. 3, pp. 1499-1520 | DOI | MR | Zbl

[16] Hamaker, Zachary; Pechenik, Oliver; Weigandt, Anna Gröbner geometry of Schubert polynomials through ice, Adv. Math., Volume 398 (2022), Paper no. 108228, 29 pages | DOI | Zbl

[17] Hartshorne, Robin Generalized divisors and biliaison, Illinois J. Math., Volume 51 (2007) no. 1, pp. 83-98 | DOI | MR | Zbl

[18] Hibi, Takayuki; Nishiyama, Kenta; Ohsugi, Hidefumi; Shikama, Akihiro Many toric ideals generated by quadratic binomials possess no quadratic Gröbner bases, J. Algebra, Volume 408 (2014), pp. 138-146 | DOI | Zbl

[19] Hochster, Melvin Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2), Volume 96 (1972), pp. 318-337 | DOI | MR | Zbl

[20] Klein, Patricia Diagonal degenerations of matrix Schubert varieties, Algebr. Comb., Volume 6 (2023) no. 4, pp. 1073-1094 | arXiv

[21] Klein, Patricia; Rajchgot, Jenna Geometric vertex decomposition and liaison, Forum Math. Sigma, Volume 9 (2021), Paper no. e70, 23 pages | DOI | MR | Zbl

[22] Kleppe, Jan O.; Migliore, Juan C.; Miró–Roig, Rosa; Nagel, Uwe; Peterson, Chris Complete Intersection Liaison Invariants and Unobstructedness, Mem. Amer. Math. Soc., Volume 154 (2001) no. 732, p. viii+116pp | MR | Zbl

[23] Knutson, Allen; Miller, Ezra; Yong, Alexander Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., Volume 630 (2009), pp. 1-31 | DOI | Zbl

[24] Migliore, Juan C.; Nagel, Uwe Liaison and Related Topics: Notes from the Torino Workshop/School, Rend. Semin. Mat. Univ. Politec. Torino, Volume 59 (2001) no. 2, pp. 59-126 | MR | Zbl

[25] Migliore, Juan C.; Nagel, Uwe Glicci ideals, Compos. Math., Volume 149 (2013) no. 9, pp. 1583-1591 | DOI | MR | Zbl

[26] Moradi, Somayeh; Khosh–Ahang, Fahimeh On vertex decomposable simplicial complexes and their Alexander duals, Math. Scand., Volume 118 (2016) no. 1, pp. 43-56 | DOI | MR | Zbl

[27] Nagel, Uwe; Römer, Tim Glicci simplicial complexes, J. Pure Appl. Algebra, Volume 212 (2008) no. 10, pp. 2250-2258 | DOI | MR | Zbl

[28] Ohsugi, Hidefumi; Hibi, Takayuki Toric ideals generated by quadratic binomials, J. Algebra, Volume 218 (1999) no. 2, pp. 509-527 | DOI | MR | Zbl

[29] Provan, J. Scott; Billera, Louis J. Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res., Volume 5 (1980) no. 4, pp. 576-594 | DOI | MR | Zbl

[30] Sturmfels, Bernd Gröbner bases and convex polytopes, 8, American Mathematical Soc., 1996

[31] Tatakis, Christos; Thoma, Apostolos On the universal Gröbner bases of toric ideals of graphs, J. Combin. Theory Ser. A, Volume 118 (2011) no. 5, pp. 1540-1548 | DOI | Zbl

[32] Villarreal, Rafael H. Rees algebras of edge ideals, Comm. Algebra, Volume 23 (1995) no. 9, pp. 3513-3524 | DOI | MR | Zbl

[33] Villarreal, Rafael H. Monomial algebras, Monographs and research notes in mathematics, CRC Press, Taylor & Francis Group, Boca Raton, 2015

Cited by Sources: