We study lines through the origin of finite-dimensional complex vector spaces that enjoy a doubly transitive automorphism group. This paper classifies those lines that exhibit almost simple symmetries. We introduce a general recipe involving Schur covers to recover doubly transitive lines from their automorphism group. Combining our results with recent work on the affine case by Dempwolff and Kantor [13], we deduce a classification of all linearly dependent doubly transitive lines in real or complex space.
Revised:
Accepted:
Published online:
Keywords: equiangular lines, doubly transitive, roux, Higman pair, equiangular tight frame
Iverson, Joseph W. 1; Mixon, Dustin G. 2
@article{ALCO_2024__7_1_37_0, author = {Iverson, Joseph W. and Mixon, Dustin G.}, title = {Doubly transitive lines {II:} {Almost} simple symmetries}, journal = {Algebraic Combinatorics}, pages = {37--76}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {1}, year = {2024}, doi = {10.5802/alco.324}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.324/} }
TY - JOUR AU - Iverson, Joseph W. AU - Mixon, Dustin G. TI - Doubly transitive lines II: Almost simple symmetries JO - Algebraic Combinatorics PY - 2024 SP - 37 EP - 76 VL - 7 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.324/ DO - 10.5802/alco.324 LA - en ID - ALCO_2024__7_1_37_0 ER -
%0 Journal Article %A Iverson, Joseph W. %A Mixon, Dustin G. %T Doubly transitive lines II: Almost simple symmetries %J Algebraic Combinatorics %D 2024 %P 37-76 %V 7 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.324/ %R 10.5802/alco.324 %G en %F ALCO_2024__7_1_37_0
Iverson, Joseph W.; Mixon, Dustin G. Doubly transitive lines II: Almost simple symmetries. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 37-76. doi : 10.5802/alco.324. https://alco.centre-mersenne.org/articles/10.5802/alco.324/
[1] Frame graph, Linear Multilinear Algebra, Volume 66 (2018) no. 6, pp. 1229-1243 | DOI | MR | Zbl
[2] The multiplicators of certain simple groups, Proc. Amer. Math. Soc., Volume 17 (1966), pp. 515-519 | DOI | MR | Zbl
[3] Recognising the small Ree groups in their natural representations, J. Algebra, Volume 416 (2014), pp. 139-166 | DOI | MR | Zbl
[4] The road to deterministic matrices with the restricted isometry property, J. Fourier Anal. Appl., Volume 19 (2013) no. 6, pp. 1123-1149 | DOI | MR | Zbl
[5] Theory of groups of finite order, Cambridge University Press, 1897
[6] Cohomological aspects of two-graphs, Math. Z., Volume 157 (1977) no. 2, pp. 101-119 | DOI | MR | Zbl
[7] Finite permutation groups and finite simple groups, Bull. London Math. Soc., Volume 13 (1981) no. 1, pp. 1-22 | DOI | MR | Zbl
[8] Covers of graphs and EGQs, Discrete Math., Volume 97 (1991) no. 1-3, pp. 83-92 | DOI | MR | Zbl
[9] THE PROJECTIVE SYMMETRY GROUP OF A FINITE FRAME, New Zealand J. Math., Volume 48 (2018), pp. 55-81 | DOI | MR | Zbl
[10] Packing lines, planes, etc.: packings in Grassmannian spaces, Experiment. Math., Volume 5 (1996) no. 2, pp. 139-159 http://projecteuclid.org/euclid.em/1047565645 | DOI | MR | Zbl
[11] Equiangular lines and covers of the complete graph, Linear Algebra Appl., Volume 488 (2016), pp. 264-283 | DOI | MR | Zbl
[12] Spherical codes and designs, Geometriae Dedicata, Volume 6 (1977) no. 3, pp. 363-388 | DOI | MR | Zbl
[13] On 2-transitive sets of equiangular lines, Bull. Aust. Math. Soc., Volume 107 (2023) no. 1, pp. 134-145 | DOI | MR | Zbl
[14] Permutation groups, Springer-Verlag, New York, 1996, xii+346 pages | DOI | MR
[15] Polyphase equiangular tight frames and abelian generalized quadrangles, Appl. Comput. Harmon. Anal., Volume 47 (2019) no. 3, pp. 628-661 | DOI | MR | Zbl
[16] Tables of the existence of equiangular tight frames, 2015 | arXiv
[17] GAP – Groups, Algorithms, and Programming, Version 4.9.3 (2018) http://www.gap-system.org
[18] Krein covers of complete graphs, Australas. J. Combin., Volume 6 (1992), pp. 245-255 | MR | Zbl
[19] Distance regular covers of the complete graph, J. Combin. Theory Ser. B, Volume 56 (1992) no. 2, pp. 205-238 | DOI | MR | Zbl
[20] Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., Volume 183 (1973), pp. 355-421 | DOI | MR | Zbl
[21] Schur multipliers of some sporadic simple groups, J. Algebra, Volume 32 (1974) no. 3, pp. 445-466 | DOI | MR | Zbl
[22] Classical groups and geometric algebra, American Mathematical Society, Providence, RI, 2002, x+169 pages | MR
[23] Finite groups III, Springer-Verlag, Berlin-New York, 1982, ix+454 pages | MR
[24] Optimal projective packings from association schemes, Wavelets and Sparsity VII, Volume 10394 (2017), Paper no. 103940P | DOI
[25] Optimal line packings from finite group actions, Forum Math. Sigma, Volume 8 (2020), Paper no. e6 | DOI | MR | Zbl
[26] Optimal line packings from nonabelian groups, Discrete Comput. Geom., Volume 63 (2020) no. 3, pp. 731-763 | DOI | MR | Zbl
[27] https://github.com/jwiverson/2-tran-II, 2019
[28] Doubly transitive lines I: Higman pairs and roux, J. Combin. Theory Ser. A, Volume 185 (2022), Paper no. 105540 | DOI | MR | Zbl
[29] Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A, Volume 38 (1985) no. 1, pp. 66-74 | DOI | MR | Zbl
[30] Projective representations of finite groups, Marcel Dekker, Inc., New York, 1985, xiii+644 pages | MR
[31] The Schur multiplier, Clarendon Press, New York, 1987, x+302 pages | MR
[32] Matrix generators for the Ree groups , Comm. Algebra, Volume 29 (2001) no. 1, pp. 407-413 | DOI | MR | Zbl
[33] 2- and 3-Covariant Equiangular Tight Frames, 2019 13th International conference on Sampling Theory and Applications (SampTA) (2019) | DOI
[34] The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990, x+303 pages | DOI | MR
[35] Algebra, Springer-Verlag, New York, 2002, xvi+914 pages | DOI | MR
[36] The structure of Ree groups, Algebra i Logika, Volume 24 (1985) no. 1, pp. 26-41 | MR
[37] Generation of classical groups, Geom. Dedicata, Volume 49 (1994) no. 1, pp. 85-116 | DOI | MR | Zbl
[38] The multiplier of the Higman-Sims simple group, Bull. London Math. Soc., Volume 3 (1971), pp. 283-285 | DOI | MR | Zbl
[39] Fingerprinting with equiangular tight frames, IEEE Trans. Inform. Theory, Volume 59 (2013) no. 3, pp. 1855-1865 | DOI | MR | Zbl
[40] Automorphisms of unitary block designs, J. Algebra, Volume 20 (1972), pp. 495-511 | DOI | MR | Zbl
[41] Probabilistic generation of wreath products of non-abelian finite simple groups, Comm. Algebra, Volume 32 (2004) no. 12, pp. 4753-4768 | DOI | MR | Zbl
[42] Equiangular tight frames from Paley tournaments, Linear Algebra Appl., Volume 426 (2007) no. 2-3, pp. 497-501 | DOI | MR | Zbl
[43] Symmetric informationally complete quantum measurements, J. Math. Phys., Volume 45 (2004) no. 6, pp. 2171-2180 | DOI | MR | Zbl
[44] A survey of two-graphs, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I, Accad. Naz. Lincei, Rome, 1976, p. 481-511. Atti dei Convegni Lincei, No. 17 | MR | Zbl
[45] Geometry and combinatorics, Academic Press, Inc., Boston, MA, 1991, xix+410 pages | DOI | MR
[46] Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113-127 | MR | Zbl
[47] GEOMETRY AND CONSTRUCTIONS OF FINITE FRAMES, Masters thesis, Texas A&M University (2007)
[48] Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., Volume 14 (2003) no. 3, pp. 257-275 | DOI | MR | Zbl
[49] Regular -graphs, Proc. London Math. Soc. (3), Volume 35 (1977) no. 2, pp. 257-274 | DOI | MR | Zbl
[50] Two-graphs and doubly transitive groups, J. Combin. Theory Ser. A, Volume 61 (1992) no. 1, pp. 113-122 | DOI | MR | Zbl
[51] Covers of complete graphs and related association schemes, J. Combin. Theory Ser. A, Volume 191 (2022), Paper no. 105646 | DOI | MR | Zbl
[52] On Ree’s series of simple groups, Trans. Amer. Math. Soc., Volume 121 (1966), pp. 62-89 | DOI | MR | Zbl
[53] Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, Volume 20 (1974) no. 3, pp. 397-399 | DOI | Zbl
[54] Finite permutation groups, Academic Press, New York-London, 1964, x+114 pages | MR
[55] The finite simple groups, Springer-Verlag, London, 2009, xvi+298 pages | DOI | MR
[56] ATLAS of Finite Group Representations http://brauer.maths.qmul.ac.uk/Atlas/v3 (version 3)
[57] Quantum designs: Foundations of a non-commutative design theory, Ph. D. Thesis, University of Vienna, Vienna, Austria (1999)
[58] Super-symmetric informationally complete measurements, Ann. Physics, Volume 362 (2015), pp. 311-326 | DOI | MR | Zbl
Cited by Sources: