Doubly transitive lines II: Almost simple symmetries
Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 37-76.

We study lines through the origin of finite-dimensional complex vector spaces that enjoy a doubly transitive automorphism group. This paper classifies those lines that exhibit almost simple symmetries. We introduce a general recipe involving Schur covers to recover doubly transitive lines from their automorphism group. Combining our results with recent work on the affine case by Dempwolff and Kantor [13], we deduce a classification of all linearly dependent doubly transitive lines in real or complex space.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.324
Classification: 52C35, 05E18, 20B25, 20B20
Keywords: equiangular lines, doubly transitive, roux, Higman pair, equiangular tight frame

Iverson, Joseph W. 1; Mixon, Dustin G. 2

1 Department of Mathematics Iowa State University Ames IA
2 Department of Mathematics The Ohio State University Columbus OH
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_1_37_0,
     author = {Iverson, Joseph W. and Mixon, Dustin G.},
     title = {Doubly transitive lines {II:}  {Almost} simple symmetries},
     journal = {Algebraic Combinatorics},
     pages = {37--76},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {1},
     year = {2024},
     doi = {10.5802/alco.324},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.324/}
}
TY  - JOUR
AU  - Iverson, Joseph W.
AU  - Mixon, Dustin G.
TI  - Doubly transitive lines II:  Almost simple symmetries
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 37
EP  - 76
VL  - 7
IS  - 1
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.324/
DO  - 10.5802/alco.324
LA  - en
ID  - ALCO_2024__7_1_37_0
ER  - 
%0 Journal Article
%A Iverson, Joseph W.
%A Mixon, Dustin G.
%T Doubly transitive lines II:  Almost simple symmetries
%J Algebraic Combinatorics
%D 2024
%P 37-76
%V 7
%N 1
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.324/
%R 10.5802/alco.324
%G en
%F ALCO_2024__7_1_37_0
Iverson, Joseph W.; Mixon, Dustin G. Doubly transitive lines II:  Almost simple symmetries. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 37-76. doi : 10.5802/alco.324. https://alco.centre-mersenne.org/articles/10.5802/alco.324/

[1] Abdollahi, Farshid; Najafi, Hashem Frame graph, Linear Multilinear Algebra, Volume 66 (2018) no. 6, pp. 1229-1243 | DOI | MR | Zbl

[2] Alperin, J. L.; Gorenstein, Daniel The multiplicators of certain simple groups, Proc. Amer. Math. Soc., Volume 17 (1966), pp. 515-519 | DOI | MR | Zbl

[3] Bäärnhielm, Henrik Recognising the small Ree groups in their natural representations, J. Algebra, Volume 416 (2014), pp. 139-166 | DOI | MR | Zbl

[4] Bandeira, Afonso S.; Fickus, Matthew; Mixon, Dustin G.; Wong, Percy The road to deterministic matrices with the restricted isometry property, J. Fourier Anal. Appl., Volume 19 (2013) no. 6, pp. 1123-1149 | DOI | MR | Zbl

[5] Burnside, William Theory of groups of finite order, Cambridge University Press, 1897

[6] Cameron, Peter J. Cohomological aspects of two-graphs, Math. Z., Volume 157 (1977) no. 2, pp. 101-119 | DOI | MR | Zbl

[7] Cameron, Peter J. Finite permutation groups and finite simple groups, Bull. London Math. Soc., Volume 13 (1981) no. 1, pp. 1-22 | DOI | MR | Zbl

[8] Cameron, Peter J. Covers of graphs and EGQs, Discrete Math., Volume 97 (1991) no. 1-3, pp. 83-92 | DOI | MR | Zbl

[9] Chien, Tuan-Yow; Waldron, Shayne THE PROJECTIVE SYMMETRY GROUP OF A FINITE FRAME, New Zealand J. Math., Volume 48 (2018), pp. 55-81 | DOI | MR | Zbl

[10] Conway, John H.; Hardin, Ronald H.; Sloane, Neil J. A. Packing lines, planes, etc.: packings in Grassmannian spaces, Experiment. Math., Volume 5 (1996) no. 2, pp. 139-159 http://projecteuclid.org/euclid.em/1047565645 | DOI | MR | Zbl

[11] Coutinho, G.; Godsil, C.; Shirazi, H.; Zhan, H. Equiangular lines and covers of the complete graph, Linear Algebra Appl., Volume 488 (2016), pp. 264-283 | DOI | MR | Zbl

[12] Delsarte, P.; Goethals, J. M.; Seidel, J. J. Spherical codes and designs, Geometriae Dedicata, Volume 6 (1977) no. 3, pp. 363-388 | DOI | MR | Zbl

[13] Dempwolff, Ulrich; Kantor, William M. On 2-transitive sets of equiangular lines, Bull. Aust. Math. Soc., Volume 107 (2023) no. 1, pp. 134-145 | DOI | MR | Zbl

[14] Dixon, John D.; Mortimer, Brian Permutation groups, Springer-Verlag, New York, 1996, xii+346 pages | DOI | MR

[15] Fickus, Matthew; Jasper, John; Mixon, Dustin G.; Peterson, Jesse D.; Watson, Cody E. Polyphase equiangular tight frames and abelian generalized quadrangles, Appl. Comput. Harmon. Anal., Volume 47 (2019) no. 3, pp. 628-661 | DOI | MR | Zbl

[16] Fickus, Matthew; Mixon, Dustin G. Tables of the existence of equiangular tight frames, 2015 | arXiv

[17] GAP – Groups, Algorithms, and Programming, Version 4.9.3 (2018) http://www.gap-system.org

[18] Godsil, C. D. Krein covers of complete graphs, Australas. J. Combin., Volume 6 (1992), pp. 245-255 | MR | Zbl

[19] Godsil, C. D.; Hensel, A. D. Distance regular covers of the complete graph, J. Combin. Theory Ser. B, Volume 56 (1992) no. 2, pp. 205-238 | DOI | MR | Zbl

[20] Griess, Robert L. Jr. Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., Volume 183 (1973), pp. 355-421 | DOI | MR | Zbl

[21] Griess, Robert L. Jr. Schur multipliers of some sporadic simple groups, J. Algebra, Volume 32 (1974) no. 3, pp. 445-466 | DOI | MR | Zbl

[22] Grove, Larry C. Classical groups and geometric algebra, American Mathematical Society, Providence, RI, 2002, x+169 pages | MR

[23] Huppert, Bertram; Blackburn, Norman Finite groups III, Springer-Verlag, Berlin-New York, 1982, ix+454 pages | MR

[24] Iverson, Joseph W.; Jasper, John; Mixon, Dustin G. Optimal projective packings from association schemes, Wavelets and Sparsity VII, Volume 10394 (2017), Paper no. 103940P | DOI

[25] Iverson, Joseph W.; Jasper, John; Mixon, Dustin G. Optimal line packings from finite group actions, Forum Math. Sigma, Volume 8 (2020), Paper no. e6 | DOI | MR | Zbl

[26] Iverson, Joseph W.; Jasper, John; Mixon, Dustin G. Optimal line packings from nonabelian groups, Discrete Comput. Geom., Volume 63 (2020) no. 3, pp. 731-763 | DOI | MR | Zbl

[27] Iverson, Joseph W.; Mixon, Dustin G. https://github.com/jwiverson/2-tran-II, 2019

[28] Iverson, Joseph W.; Mixon, Dustin G. Doubly transitive lines I: Higman pairs and roux, J. Combin. Theory Ser. A, Volume 185 (2022), Paper no. 105540 | DOI | MR | Zbl

[29] Kantor, William M. Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A, Volume 38 (1985) no. 1, pp. 66-74 | DOI | MR | Zbl

[30] Karpilovsky, Gregory Projective representations of finite groups, Marcel Dekker, Inc., New York, 1985, xiii+644 pages | MR

[31] Karpilovsky, Gregory The Schur multiplier, Clarendon Press, New York, 1987, x+302 pages | MR

[32] Kemper, Gregor; Lübeck, Frank; Magaard, Kay Matrix generators for the Ree groups 2 G 2 (q), Comm. Algebra, Volume 29 (2001) no. 1, pp. 407-413 | DOI | MR | Zbl

[33] King, Emily J. 2- and 3-Covariant Equiangular Tight Frames, 2019 13th International conference on Sampling Theory and Applications (SampTA) (2019) | DOI

[34] Kleidman, Peter; Liebeck, Martin The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990, x+303 pages | DOI | MR

[35] Lang, Serge Algebra, Springer-Verlag, New York, 2002, xvi+914 pages | DOI | MR

[36] Levchuk, V. M.; Nuzhin, Ya. N. The structure of Ree groups, Algebra i Logika, Volume 24 (1985) no. 1, pp. 26-41 | MR

[37] Malle, Gunter; Saxl, Jan; Weigel, Thomas Generation of classical groups, Geom. Dedicata, Volume 49 (1994) no. 1, pp. 85-116 | DOI | MR | Zbl

[38] McKay, John; Wales, David The multiplier of the Higman-Sims simple group, Bull. London Math. Soc., Volume 3 (1971), pp. 283-285 | DOI | MR | Zbl

[39] Mixon, Dustin G.; Quinn, Christopher J.; Kiyavash, Negar; Fickus, Matthew Fingerprinting with equiangular tight frames, IEEE Trans. Inform. Theory, Volume 59 (2013) no. 3, pp. 1855-1865 | DOI | MR | Zbl

[40] O’Nan, Michael E. Automorphisms of unitary block designs, J. Algebra, Volume 20 (1972), pp. 495-511 | DOI | MR | Zbl

[41] Quick, Martyn Probabilistic generation of wreath products of non-abelian finite simple groups, Comm. Algebra, Volume 32 (2004) no. 12, pp. 4753-4768 | DOI | MR | Zbl

[42] Renes, Joseph M. Equiangular tight frames from Paley tournaments, Linear Algebra Appl., Volume 426 (2007) no. 2-3, pp. 497-501 | DOI | MR | Zbl

[43] Renes, Joseph M.; Blume-Kohout, Robin; Scott, A. J.; Caves, Carlton M. Symmetric informationally complete quantum measurements, J. Math. Phys., Volume 45 (2004) no. 6, pp. 2171-2180 | DOI | MR | Zbl

[44] Seidel, J. J. A survey of two-graphs, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I, Accad. Naz. Lincei, Rome, 1976, p. 481-511. Atti dei Convegni Lincei, No. 17 | MR | Zbl

[45] Seidel, J. J. Geometry and combinatorics, Academic Press, Inc., Boston, MA, 1991, xix+410 pages | DOI | MR

[46] Steinberg, Robert Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113-127 | MR | Zbl

[47] Strawn, Nathaniel Kirk GEOMETRY AND CONSTRUCTIONS OF FINITE FRAMES, Masters thesis, Texas A&M University (2007)

[48] Strohmer, Thomas; Heath, Robert W. Jr. Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., Volume 14 (2003) no. 3, pp. 257-275 | DOI | MR | Zbl

[49] Taylor, D. E. Regular 2-graphs, Proc. London Math. Soc. (3), Volume 35 (1977) no. 2, pp. 257-274 | DOI | MR | Zbl

[50] Taylor, D. E. Two-graphs and doubly transitive groups, J. Combin. Theory Ser. A, Volume 61 (1992) no. 1, pp. 113-122 | DOI | MR | Zbl

[51] Tsiovkina, Ludmila Yu. Covers of complete graphs and related association schemes, J. Combin. Theory Ser. A, Volume 191 (2022), Paper no. 105646 | DOI | MR | Zbl

[52] Ward, Harold N. On Ree’s series of simple groups, Trans. Amer. Math. Soc., Volume 121 (1966), pp. 62-89 | DOI | MR | Zbl

[53] Welch, Lloyd Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, Volume 20 (1974) no. 3, pp. 397-399 | DOI | Zbl

[54] Wielandt, Helmut Finite permutation groups, Academic Press, New York-London, 1964, x+114 pages | MR

[55] Wilson, Robert A. The finite simple groups, Springer-Verlag, London, 2009, xvi+298 pages | DOI | MR

[56] Wilson, Robert A.; Walsh, Peter; Tripp, Jonathan; Suleiman, Ibrahim; Parker, Richard A.; Norton, Simon P.; Nickerson, Simon; Linton, Steve; Bray, John; Abbott, Rachel ATLAS of Finite Group Representations http://brauer.maths.qmul.ac.uk/Atlas/v3 (version 3)

[57] Zauner, Gerhard Quantum designs: Foundations of a non-commutative design theory, Ph. D. Thesis, University of Vienna, Vienna, Austria (1999)

[58] Zhu, Huangjun Super-symmetric informationally complete measurements, Ann. Physics, Volume 362 (2015), pp. 311-326 | DOI | MR | Zbl

Cited by Sources: