In the context of the shuffle theorem, many classical integer sequences appear with a natural refinement by two statistics and : for example the Catalan and Schröder numbers. In particular, the bi-graded Hilbert series of diagonal harmonics is a -analog of (and can be written in terms of symmetric functions via the nabla operator). The motivation for this work is the observation that at , this -analog becomes a -analog of Euler numbers, a famous integer sequence that counts alternating permutations. We prove this observation via a more general statement, that involves the Delta operator on symmetric functions (on one side), and new combinatorial statistics on permutations involving peaks and valleys (on the other side). An important tool are the schedule numbers of a parking function first introduced by Hicks; and expanded upon by Haglund and Sergel. Other empirical observations suggests that non negativity at holds in far greater generality.
Accepted:
Published online:
Keywords: Delta conjecture, Macdonald polynomials, permutations, schedule numbers
Corteel, Sylvie 1; Josuat-Vergès, Matthieu 1; Vanden Wyngaerd, Anna 2
@article{ALCO_2024__7_1_17_0, author = {Corteel, Sylvie and Josuat-Verg\`es, Matthieu and Vanden Wyngaerd, Anna}, title = {Combinatorics of the {Delta} conjecture at $q=-1$}, journal = {Algebraic Combinatorics}, pages = {17--35}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {1}, year = {2024}, doi = {10.5802/alco.329}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.329/} }
TY - JOUR AU - Corteel, Sylvie AU - Josuat-Vergès, Matthieu AU - Vanden Wyngaerd, Anna TI - Combinatorics of the Delta conjecture at $q=-1$ JO - Algebraic Combinatorics PY - 2024 SP - 17 EP - 35 VL - 7 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.329/ DO - 10.5802/alco.329 LA - en ID - ALCO_2024__7_1_17_0 ER -
%0 Journal Article %A Corteel, Sylvie %A Josuat-Vergès, Matthieu %A Vanden Wyngaerd, Anna %T Combinatorics of the Delta conjecture at $q=-1$ %J Algebraic Combinatorics %D 2024 %P 17-35 %V 7 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.329/ %R 10.5802/alco.329 %G en %F ALCO_2024__7_1_17_0
Corteel, Sylvie; Josuat-Vergès, Matthieu; Vanden Wyngaerd, Anna. Combinatorics of the Delta conjecture at $q=-1$. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 17-35. doi : 10.5802/alco.329. https://alco.centre-mersenne.org/articles/10.5802/alco.329/
[1] Science fiction and Macdonald’s polynomials, Algebraic methods and -special functions (Montréal, QC, 1996) (CRM Proc. Lecture Notes), Volume 22, Amer. Math. Soc., Providence, RI, 1999, pp. 1-52 | DOI | MR | Zbl
[2] The Bosonic-Fermionic Diagonal Coinvariant Modules Conjecture, 2020 | arXiv
[3] A proof of the shuffle conjecture, J. Amer. Math. Soc., Volume 31 (2018) no. 3, pp. 661-697 | DOI | MR | Zbl
[4] Variations on descents and inversions in permutations, Electron. J. Combin., Volume 15 (2008) no. 1, Paper no. 32, 34 pages | DOI | MR | Zbl
[5] Tiered Trees and Theta Operators, Int. Math. Res. Not. IMRN (2023) no. 24, pp. 20748-20783 | DOI | MR | Zbl
[6] The delta square conjecture, Int. Math. Res. Not. IMRN (2021) no. 1, pp. 38-86 | DOI | MR | Zbl
[7] Theta operators, refined delta conjectures, and coinvariants, Adv. Math., Volume 376 (2021), Paper no. 107447, 59 pages | DOI | MR | Zbl
[8] Decorated Dyck paths, polyominoes, and the delta conjecture, Mem. Amer. Math. Soc., Volume 278 (2022) no. 1370, p. vii+119 | DOI | MR | Zbl
[9] A proof of the compositional delta conjecture, Adv. Math., Volume 402 (2022), Paper no. 108342, 17 pages | DOI | MR | Zbl
[10] A proof of the delta conjecture when , Ann. Comb., Volume 23 (2019) no. 2, pp. 317-333 | DOI | MR | Zbl
[11] Conjectured statistics for the -Catalan numbers, Adv. Math., Volume 175 (2003) no. 2, pp. 319-334 | DOI | MR | Zbl
[12] A proof of the -Schröder conjecture, Int. Math. Res. Not. (2004) no. 11, pp. 525-560 | DOI | MR | Zbl
[13] The ,-Catalan numbers and the space of diagonal harmonics, University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008, viii+167 pages | DOI | MR
[14] A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J., Volume 126 (2005) no. 2, pp. 195-232 | DOI | MR
[15] The delta conjecture, Trans. Amer. Math. Soc., Volume 370 (2018) no. 6, pp. 4029-4057 | DOI | MR | Zbl
[16] Schedules and the delta conjecture, Ann. Comb., Volume 25 (2021) no. 1, pp. 1-31 | DOI | MR | Zbl
[17] Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., Volume 149 (2002) no. 2, pp. 371-407 | DOI | MR
[18] Un autre -analogue des nombres d’Euler, Sém. Lothar. Combin., Volume 42 (1999), Paper no. B42e, 22 pages | MR | Zbl
[19] Parking Function Polynomials and Their Relation to the Shuffle Conjecture, Ph. D. Thesis, University of California, San Diego (2013)
[20] Énumération de tableaux et de chemins, moments de polynômes orthogonaux, Ph. D. Thesis, Université Paris-sud 11 (2010)
[21] Une famille de polynômes ayant plusieurs propriétés énumeratives, Period. Math. Hungar., Volume 11 (1980) no. 4, pp. 309-320 | DOI | MR | Zbl
[22] Square -lattice paths and , Trans. Amer. Math. Soc., Volume 359 (2007) no. 2, pp. 649-669 | DOI | MR | Zbl
[23] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | DOI | MR
[24] The inversion enumerator for labeled trees, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 92-94 | DOI | MR | Zbl
[25] The On-Line Encyclopedia of Integer Sequences, 2023 (published electronically at http://oeis.org)
[26] Nombres d’Euler et inversions dans les arbres, European J. Combin., Volume 3 (1982) no. 3, pp. 259-262 | DOI | MR | Zbl
[27] Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons, Electron. J. Combin., Volume 25 (2018) no. 1, Paper no. 1.66, 20 pages | DOI | MR | Zbl
[28] The delta conjecture at , Trans. Amer. Math. Soc., Volume 369 (2017) no. 10, pp. 7509-7530 | DOI | MR | Zbl
[29] A proof of the square paths conjecture, J. Combin. Theory Ser. A, Volume 152 (2017), pp. 363-379 | DOI | MR | Zbl
[30] A module for the Delta conjecture, 2019 | arXiv
Cited by Sources: