We give a presentation of refined (dual) canonical Grothendieck polynomials and their skew versions using free fermions. Using this, we derive a number of identities, including the skew Cauchy identities, branching rules, expansion formulas, and integral formulas.
Revised:
Accepted:
Published online:
Keywords: Grothendieck polynomial, free fermion
Iwao, Shinsuke 1; Motegi, Kohei 2; Scrimshaw, Travis 3
@article{ALCO_2024__7_1_245_0, author = {Iwao, Shinsuke and Motegi, Kohei and Scrimshaw, Travis}, title = {Free fermions and canonical {Grothendieck} polynomials}, journal = {Algebraic Combinatorics}, pages = {245--274}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {1}, year = {2024}, doi = {10.5802/alco.332}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.332/} }
TY - JOUR AU - Iwao, Shinsuke AU - Motegi, Kohei AU - Scrimshaw, Travis TI - Free fermions and canonical Grothendieck polynomials JO - Algebraic Combinatorics PY - 2024 SP - 245 EP - 274 VL - 7 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.332/ DO - 10.5802/alco.332 LA - en ID - ALCO_2024__7_1_245_0 ER -
%0 Journal Article %A Iwao, Shinsuke %A Motegi, Kohei %A Scrimshaw, Travis %T Free fermions and canonical Grothendieck polynomials %J Algebraic Combinatorics %D 2024 %P 245-274 %V 7 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.332/ %R 10.5802/alco.332 %G en %F ALCO_2024__7_1_245_0
Iwao, Shinsuke; Motegi, Kohei; Scrimshaw, Travis. Free fermions and canonical Grothendieck polynomials. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 245-274. doi : 10.5802/alco.332. https://alco.centre-mersenne.org/articles/10.5802/alco.332/
[1] Free fermions and tau-functions, J. Geom. Phys., Volume 67 (2013), pp. 37-80 | DOI | MR | Zbl
[2] Determinantal formulas for dual Grothendieck polynomials, Proc. Amer. Math. Soc., Volume 150 (2022) no. 10, pp. 4113-4128 | DOI | MR | Zbl
[3] A Littlewood–Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[4] Combinatorial relations on skew Schur and skew stable Grothendieck polynomials, Algebr. Comb., Volume 4 (2021) no. 1, pp. 175-188 | DOI | Numdam | MR | Zbl
[5] Transformation groups for soliton equations, Nonlinear integrable systems—classical theory and quantum theory (Kyoto, 1981), World Sci. Publishing, Singapore, 1983, pp. 39-119 | MR | Zbl
[6] Determinantal transition kernels for some interacting particles on the line, Ann. Inst. Henri Poincaré Probab. Stat., Volume 44 (2008) no. 6, pp. 1162-1172 | DOI | Numdam | MR | Zbl
[7] Grothendieck polynomials and the Yang–Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, 1994, pp. 183-189 | MR
[8] Refined dual stable Grothendieck polynomials and generalized Bender–Knuth involutions, Electron. J. Combin., Volume 23 (2016) no. 3, Paper no. 3.14, 28 pages | MR | Zbl
[9] Vertex models for Canonical Grothendieck polynomials and their duals, Algebr. Comb., Volume 6 (2023) no. 1, pp. 109-162 | DOI | MR | Zbl
[10] Lattice models, Hamiltonian operators, and symmetric functions, 2021 | arXiv
[11] Degeneracy loci classes in -theory—determinantal and Pfaffian formula, Adv. Math., Volume 320 (2017), pp. 115-156 | DOI | MR | Zbl
[12] Refined canonical stable Grothendieck polynomials and their duals, 2021 | arXiv
[13] Grothendieck polynomials and the boson-fermion correspondence, Algebr. Comb., Volume 3 (2020) no. 5, pp. 1023-1040 | DOI | Numdam | MR | Zbl
[14] Free-fermions and skew stable Grothendieck polynomials, J. Algebraic Combin., Volume 56 (2022) no. 2, pp. 493-526 | DOI | MR | Zbl
[15] Free fermions and Schur expansions of multi-Schur functions, J. Combin. Theory Ser. A, Volume 198 (2023), Paper no. 105767, 23 pages | DOI | MR | Zbl
[16] Combinatorial description of canonical free fermions (2024) (In preparation)
[17] Free fermionic probability theory and K-theoretic Schubert calculus (2024) (In preparation)
[18] Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, xxii+400 pages | DOI | MR
[19] Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Advanced Series in Mathematical Physics, 29, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013, xii+237 pages | DOI | MR
[20] Jacobi–Trudi formula for refined dual stable Grothendieck polynomials, J. Combin. Theory Ser. A, Volume 180 (2021), Paper no. 105415, 33 pages | DOI | MR | Zbl
[21] Jacobi–Trudi formulas for flagged refined dual stable Grothendieck polynomials, Algebr. Comb., Volume 5 (2022) no. 1, pp. 121-148 | DOI | Numdam | MR | Zbl
[22] Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, 99, Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003, xii+268 pages | DOI | MR
[23] Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | MR | Zbl
[24] Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin, 1983, pp. 118-144 | DOI | MR | Zbl
[25] Combinatorial aspects of the -theory of Grassmannians, Ann. Comb., Volume 4 (2000) no. 1, pp. 67-82 | DOI | MR | Zbl
[26] A combinatorial model for crystals of Kac–Moody algebras, Trans. Amer. Math. Soc., Volume 360 (2008) no. 8, pp. 4349-4381 | DOI | MR | Zbl
[27] A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl
[28] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR
[29] Flagged Grothendieck polynomials, J. Algebraic Combin., Volume 49 (2019) no. 3, pp. 209-228 | DOI | MR | Zbl
[30] Solitons: Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, Cambridge, 2000, x+108 pages | MR
[31] Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, Paper no. 355201, 26 pages | DOI | MR | Zbl
[32] -theoretic boson-fermion correspondence and melting crystals, J. Phys. A, Volume 47 (2014) no. 44, Paper no. 445202, 30 pages | DOI | MR | Zbl
[33] Refined dual Grothendieck polynomials, integrability, and the Schur measure, 2020 | arXiv
[34] Uncrowding algorithm for hook-valued tableaux, Ann. Comb., Volume 26 (2022) no. 1, pp. 261-301 | DOI | MR | Zbl
[35] Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008 https://combinat.sagemath.org
[36] Sage Mathematics Software (Version 9.7) (2022) https://www.sagemath.org
[37] Remarks on the paper “Skew Pieri rules for Hall–Littlewood functions” by Konvalinka and Lauve, J. Algebraic Combin., Volume 38 (2013) no. 3, pp. 519-526 | DOI | MR | Zbl
[38] Littlewood–Richardson coefficients for Grothendieck polynomials from integrability, J. Reine Angew. Math., Volume 757 (2019), pp. 159-195 | DOI | MR | Zbl
[39] Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl
[40] Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Combin. Theory Ser. A, Volume 161 (2019), pp. 453-485 | DOI | MR | Zbl
[41] Dual Grothendieck polynomials via last-passage percolation, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 4, pp. 497-503 | Numdam | MR | Zbl
[42] Six-vertex, loop and tiling models: integrability and combinatorics, Lambert Academic Publishing, 2009 (Habilitation thesis)
Cited by Sources: