We give a new formula for computing the isospectral reduction of a matrix (and graph) down to a submatrix (or subgraph). Using this, we generalize the notion of isospectral reductions. In addition, we give a procedure for constructing a matrix whose isospectral reduction down to a submatrix is given. We also prove that the isospectral reduction completely determines the restriction of the quantum walk transition matrix to a subset. Using these, we construct new families of simple graphs exhibiting perfect quantum state transfer.
Revised:
Accepted:
Published online:
Keywords: isospectral reduction, equitable partition, quantum walk, perfect state transfer
Kempton, Mark 1; Tolbert, John 2
@article{ALCO_2024__7_1_225_0, author = {Kempton, Mark and Tolbert, John}, title = {Isospectral reductions and quantum walks on graphs}, journal = {Algebraic Combinatorics}, pages = {225--243}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {1}, year = {2024}, doi = {10.5802/alco.333}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.333/} }
TY - JOUR AU - Kempton, Mark AU - Tolbert, John TI - Isospectral reductions and quantum walks on graphs JO - Algebraic Combinatorics PY - 2024 SP - 225 EP - 243 VL - 7 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.333/ DO - 10.5802/alco.333 LA - en ID - ALCO_2024__7_1_225_0 ER -
%0 Journal Article %A Kempton, Mark %A Tolbert, John %T Isospectral reductions and quantum walks on graphs %J Algebraic Combinatorics %D 2024 %P 225-243 %V 7 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.333/ %R 10.5802/alco.333 %G en %F ALCO_2024__7_1_225_0
Kempton, Mark; Tolbert, John. Isospectral reductions and quantum walks on graphs. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 225-243. doi : 10.5802/alco.333. https://alco.centre-mersenne.org/articles/10.5802/alco.333/
[1] Limits for the characteristic roots of a matrix. II, Duke Math. J., Volume 14 (1947), pp. 21-26 http://projecteuclid.org/euclid.dmj/1077473986 | MR | Zbl
[2] Matrices, eigenvalues, and directed graphs, Linear and Multilinear Algebra, Volume 11 (1982) no. 2, pp. 143-165 | DOI | MR | Zbl
[3] Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks, Nonlinearity, Volume 25 (2012) no. 1, pp. 211-254 | DOI | MR | Zbl
[4] Restrictions and stability of time-delayed dynamical networks, Nonlinearity, Volume 26 (2013) no. 8, pp. 2131-2156 | DOI | MR | Zbl
[5] Improved estimates of survival probabilities via isospectral transformations, Springer Proc. Math. Stat., 70, Springer, New York, 2014, pp. 119-135 | DOI | MR
[6] Isospectral transformations: A new approach to analyzing multidimensional systems and networks, Springer Monographs in Mathematics, Springer, New York, 2014, xvi+175 pages | DOI | MR
[7] Fundamentals of fractional revival in graphs, Linear Algebra Appl., Volume 655 (2022), pp. 129-158 | DOI | MR | Zbl
[8] Quantum fractional revival on graphs, Discrete Appl. Math., Volume 269 (2019), pp. 86-98 | DOI | MR | Zbl
[9] Pretty good quantum fractional revival in paths and cycles, Algebr. Comb., Volume 4 (2021) no. 6, pp. 989-1004 | DOI | Numdam | MR | Zbl
[10] Introduction to the theory and application of the Laplace transformation, Springer-Verlag, New York-Heidelberg, 1974, vii+326 pages | DOI | MR
[11] Eigenvectors of isospectral graph transformations, Linear Algebra Appl., Volume 474 (2015), pp. 110-123 | DOI | MR | Zbl
[12] Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR Ser. Mat., Volume 1 (1931), pp. 749-754 | Zbl
[13] State transfer on graphs, Discrete Math., Volume 312 (2012) no. 1, pp. 129-147 | DOI | MR | Zbl
[14] Number-Theoretic Nature of Communication in Quantum Spin Systems, Phys. Rev. Lett., Volume 109 (2012), Paper no. 050502, 4 pages https://link.aps.org/doi/10.1103/PhysRevLett.109.050502 | DOI
[15] Algebraic graph theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001, xx+439 pages | DOI | MR
[16] Pseudospectra of isospectrally reduced matrices, Numer. Linear Algebra Appl., Volume 22 (2015) no. 1, pp. 145-174 | DOI | MR | Zbl
[17] Perfect, efficient, state transfer and its application as a constructive tool, Int. J. Quantum Inf., Volume 08 (2010) no. 04, pp. 641-676 | DOI | Zbl
[18] Characterizing cospectral vertices via isospectral reduction, Linear Algebra Appl., Volume 594 (2020), pp. 226-248 | DOI | MR | Zbl
[19] Cospectrality preserving graph modifications and eigenvector properties via walk equivalence of vertices, Linear Algebra Appl., Volume 624 (2021), pp. 53-86 | DOI | MR | Zbl
[20] Intrinsic stability: stability of dynamical networks and switched systems with any type of time-delays, Nonlinearity, Volume 33 (2020) no. 6, pp. 2660-2685 | DOI | MR | Zbl
[21] Designing pretty good state transfer via isospectral reductions, Phys. Rev. A, Volume 101 (2020), Paper no. 042304, 20 pages | DOI | MR
Cited by Sources: