Inspired by a series of conjectures and formulas related to higher coinvariant algebras, we present two families of relations involving harmonic differential forms of the symmetric group. Our relations, together with a novel bijection, are sufficient to give a filtration of the -forms suggested by work of Haglund–Rhoades–Shimozono with composition factors given by Tanisaki quotients. These are “almost all” of the necessary relations in a certain asymptotic sense we make precise.
Revised:
Accepted:
Published online:
Keywords: coinvariant algebras, Delta Conjecture, Tanisaki ideals, differential harmonics
Swanson, Joshua P. 1
@article{ALCO_2024__7_1_159_0, author = {Swanson, Joshua P.}, title = {Tanisaki witness relations for harmonic differential forms}, journal = {Algebraic Combinatorics}, pages = {159--185}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {1}, year = {2024}, doi = {10.5802/alco.334}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.334/} }
TY - JOUR AU - Swanson, Joshua P. TI - Tanisaki witness relations for harmonic differential forms JO - Algebraic Combinatorics PY - 2024 SP - 159 EP - 185 VL - 7 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.334/ DO - 10.5802/alco.334 LA - en ID - ALCO_2024__7_1_159_0 ER -
%0 Journal Article %A Swanson, Joshua P. %T Tanisaki witness relations for harmonic differential forms %J Algebraic Combinatorics %D 2024 %P 159-185 %V 7 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.334/ %R 10.5802/alco.334 %G en %F ALCO_2024__7_1_159_0
Swanson, Joshua P. Tanisaki witness relations for harmonic differential forms. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 159-185. doi : 10.5802/alco.334. https://alco.centre-mersenne.org/articles/10.5802/alco.334/
[1] A basis for the subspace of diagonal harmonic polynomials, Discrete Math., Volume 193 (1998) no. 1-3, pp. 17-31 | DOI | MR | Zbl
[2] Algebraic combinatorics and coinvariant spaces, CMS Treatises in Mathematics, Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2009, viii+221 pages | DOI | MR
[3] A proof of the Extended Delta Conjecture, Forum Math. Pi, Volume 11 (2023), Paper no. e6, 28 pages | DOI | MR | Zbl
[4] Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2), Volume 57 (1953), pp. 115-207 | DOI | MR | Zbl
[5] A proof of the compositional Delta conjecture, Adv. Math., Volume 402 (2022), Paper no. 108342, 17 pages | DOI | MR | Zbl
[6] Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR
[7] On certain graded -modules and the -Kostka polynomials, Adv. Math., Volume 94 (1992) no. 1, pp. 82-138 | DOI | MR | Zbl
[8] Combinatorial methods in the theory of Cohen-Macaulay rings, Adv. in Math., Volume 38 (1980) no. 3, pp. 229-266 | DOI | MR | Zbl
[9] The Delta Conjecture, Trans. Amer. Math. Soc., Volume 370 (2018) no. 6, pp. 4029-4057 | DOI | MR | Zbl
[10] Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture, Adv. Math., Volume 329 (2018), pp. 851-915 | DOI | MR | Zbl
[11] Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math., Volume 149 (2002) no. 2, pp. 371-407 | DOI | MR | Zbl
[12] Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin., Volume 3 (1994) no. 1, pp. 17-76 | DOI | MR | Zbl
[13] Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972, xii+169 pages | DOI | MR
[14] A flag variety for the Delta Conjecture, Trans. Amer. Math. Soc., Volume 372 (2019) no. 11, pp. 8195-8248 | DOI | MR | Zbl
[15] Vandermondes in superspace, Trans. Amer. Math. Soc., Volume 373 (2020) no. 6, pp. 4483-4516 | DOI | MR | Zbl
[16] The Hilbert series of the superspace coinvariant ring, 2023 | arXiv
[17] Invariants of finite reflection groups, Nagoya Math. J., Volume 22 (1963), pp. 57-64 http://projecteuclid.org/euclid.nmj/1118801157 | DOI | MR | Zbl
[18] Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.), Volume 1 (1979) no. 3, pp. 475-511 | DOI | MR | Zbl
[19] Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc., Volume 112 (1964), pp. 392-400 | DOI | MR | Zbl
[20] Harmonic differential forms for pseudo-reflection groups I. Semi-invariants, J. Combin. Theory Ser. A, Volume 182 (2021), Paper no. 105474, 30 pages | DOI | MR | Zbl
[21] Harmonic differential forms for pseudo-reflection groups II. Bi-degree bounds, 2023 | arXiv
[22] Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2), Volume 34 (1982) no. 4, pp. 575-585 | DOI | MR | Zbl
[23] A module for the Delta conjecture, 2019 | arXiv
Cited by Sources: