We define diagrammatic extremal weight projectors for (), a refinement of Jones–Wenzl projectors and Kuperberg’s clasps. As by-products, we obtain compatible diagrammatic presentations of the representation categories of and its Cartan subalgebra, and a categorification of power-sum symmetric polynomials.
Revised:
Accepted:
Published online:
Keywords: General linear Lie algebras, weight spaces, idempotents
Queffelec, Hoel 1; Wedrich, Paul 2
@article{ALCO_2024__7_1_187_0, author = {Queffelec, Hoel and Wedrich, Paul}, title = {Extremal weight projectors {II,} $\mathfrak{gl}_{N}$ case}, journal = {Algebraic Combinatorics}, pages = {187--223}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {1}, year = {2024}, doi = {10.5802/alco.330}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.330/} }
TY - JOUR AU - Queffelec, Hoel AU - Wedrich, Paul TI - Extremal weight projectors II, $\mathfrak{gl}_{N}$ case JO - Algebraic Combinatorics PY - 2024 SP - 187 EP - 223 VL - 7 IS - 1 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.330/ DO - 10.5802/alco.330 LA - en ID - ALCO_2024__7_1_187_0 ER -
%0 Journal Article %A Queffelec, Hoel %A Wedrich, Paul %T Extremal weight projectors II, $\mathfrak{gl}_{N}$ case %J Algebraic Combinatorics %D 2024 %P 187-223 %V 7 %N 1 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.330/ %R 10.5802/alco.330 %G en %F ALCO_2024__7_1_187_0
Queffelec, Hoel; Wedrich, Paul. Extremal weight projectors II, $\mathfrak{gl}_{N}$ case. Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 187-223. doi : 10.5802/alco.330. https://alco.centre-mersenne.org/articles/10.5802/alco.330/
[1] Categorification of the Kauffman bracket skein module of -bundles over surfaces, Algebr. Geom. Topol., Volume 4 (2004), pp. 1177-1210 | DOI | MR | Zbl
[2] Khovanov’s homology for tangles and cobordisms, Geom. Topol., Volume 9 (2005), pp. 1443-1499 | DOI | MR | Zbl
[3] Quantum link homology via trace functor I, Invent. Math., Volume 215 (2019) no. 2, pp. 383-492 | DOI | MR | Zbl
[4] An oriented model for Khovanov homology, J. Knot Theory Ramifications, Volume 19 (2010) no. 2, pp. 291-312 | DOI | MR | Zbl
[5] Representations of the Kauffman bracket skein algebra III: closed surfaces and naturality, Quantum Topol., Volume 10 (2019) no. 2, pp. 325-398 | DOI | MR | Zbl
[6] Strong positivity for the skein algebras of the 4-punctured sphere and of the 1-punctured torus, Comm. Math. Phys., Volume 398 (2023) no. 1, pp. 1-58 | DOI | MR | Zbl
[7] Representations of the oriented skein category, 2017 | arXiv
[8] Quantum K-theoretic geometric Satake: the case, Compos. Math., Volume 154 (2018) no. 2, pp. 275-327 | DOI | MR | Zbl
[9] Webs and quantum skew Howe duality, Math. Ann., Volume 360 (2014) no. 1-2, pp. 351-390 | DOI | MR | Zbl
[10] Functoriality of colored link homologies, Proc. Lond. Math. Soc. (3), Volume 117 (2018) no. 5, pp. 996-1040 | DOI | MR | Zbl
[11] Soergel calculus, Represent. Theory, Volume 20 (2016), pp. 295-374 | DOI | MR | Zbl
[12] Skein modules and the noncommutative torus, Trans. Amer. Math. Soc., Volume 352 (2000) no. 10, pp. 4877-4888 | DOI | MR | Zbl
[13] Annular Khovanov homology and knotted Schur–Weyl representations, Compos. Math., Volume 154 (2018) no. 3, pp. 459-502 | DOI | MR | Zbl
[14] Index for subfactors, Invent. Math., Volume 72 (1983) no. 1, pp. 1-25 | DOI | MR | Zbl
[15] A categorification of the Jones polynomial, Duke Math. J., Volume 101 (2000) no. 3, pp. 359-426 | DOI | MR | Zbl
[16] Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications, Volume 14 (2005) no. 1, pp. 111-130 | DOI | MR | Zbl
[17] Matrix factorizations and link homology, Fund. Math., Volume 199 (2008) no. 1, pp. 1-91 | DOI | MR | Zbl
[18] A categorification of one-variable polynomials, Proceedings of FPSAC 2015 (Discrete Math. Theor. Comput. Sci. Proc.), Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2015), pp. 937-948 | MR | Zbl
[19] Spiders for rank Lie algebras, Comm. Math. Phys., Volume 180 (1996) no. 1, pp. 109-151 | DOI | MR | Zbl
[20] Annular webs and Levi subalgebras, J. Comb. Algebra, Volume 7 (2023) no. 3-4, pp. 283-326 | DOI | MR | Zbl
[21] On positivity of Kauffman bracket skein algebras of surfaces, Int. Math. Res. Not. IMRN (2018) no. 5, pp. 1314-1328 | DOI | MR | Zbl
[22] The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra, Duke Math. J., Volume 166 (2017) no. 5, pp. 801-854 | DOI | MR | Zbl
[23] Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2), Volume 44 (1998) no. 3-4, pp. 325-360 | MR | Zbl
[24] Skein modules of -manifolds, Bull. Polish Acad. Sci. Math., Volume 39 (1991) no. 1-2, pp. 91-100 | MR | Zbl
[25] Skein modules from skew Howe duality and affine extensions, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), Paper no. 030, 36 pages | DOI | MR | Zbl
[26] Sutured annular Khovanov-Rozansky homology, Trans. Amer. Math. Soc., Volume 370 (2018) no. 2, pp. 1285-1319 | DOI | MR | Zbl
[27] Mixed quantum skew Howe duality and link invariants of type , J. Pure Appl. Algebra, Volume 223 (2019) no. 7, pp. 2733-2779 | DOI | MR | Zbl
[28] Extremal weight projectors, Math. Res. Lett., Volume 25 (2018) no. 6, pp. 1911-1936 | DOI | MR | Zbl
[29] Khovanov homology and categorification of skein modules, Quantum Topol., Volume 12 (2021) no. 1, pp. 129-209 | DOI | MR | Zbl
[30] Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9725-9732 | DOI | MR | Zbl
[31] Super -Howe duality and web categories, Algebr. Geom. Topol., Volume 17 (2017) no. 6, pp. 3703-3749 | DOI | MR | Zbl
[32] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4), Volume 24 (1991) no. 6, pp. 635-704 | DOI | Numdam | MR | Zbl
[33] On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada, Volume 9 (1987) no. 1, pp. 5-9 | MR | Zbl
Cited by Sources: