In this article, we give a first example of a pair of quantum isomorphic, non-isomorphic strongly regular graphs, that is, non-isomorphic strongly regular graphs having the same homomorphism counts from all planar graphs. The pair consists of the orthogonality graph of the lines spanned by the root system and a rank graph whose complement was first discovered by Brouwer, Ivanov and Klin. Both graphs are strongly regular with parameters . Using Godsil-McKay switching, we obtain more quantum isomorphic, non-isomorphic strongly regular graphs with the same parameters.
Revised:
Accepted:
Published online:
Keywords: strongly regular graphs, quantum isomorphism, root systems, Godsil–McKay switching
Schmidt, Simon 1
@article{ALCO_2024__7_2_515_0, author = {Schmidt, Simon}, title = {Quantum isomorphic strongly regular graphs from the $E_8$ root system}, journal = {Algebraic Combinatorics}, pages = {515--528}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {2}, year = {2024}, doi = {10.5802/alco.335}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.335/} }
TY - JOUR AU - Schmidt, Simon TI - Quantum isomorphic strongly regular graphs from the $E_8$ root system JO - Algebraic Combinatorics PY - 2024 SP - 515 EP - 528 VL - 7 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.335/ DO - 10.5802/alco.335 LA - en ID - ALCO_2024__7_2_515_0 ER -
%0 Journal Article %A Schmidt, Simon %T Quantum isomorphic strongly regular graphs from the $E_8$ root system %J Algebraic Combinatorics %D 2024 %P 515-528 %V 7 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.335/ %R 10.5802/alco.335 %G en %F ALCO_2024__7_2_515_0
Schmidt, Simon. Quantum isomorphic strongly regular graphs from the $E_8$ root system. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 515-528. doi : 10.5802/alco.335. https://alco.centre-mersenne.org/articles/10.5802/alco.335/
[1] Quantum and non-signalling graph isomorphisms, J. Combin. Theory Ser. B, Volume 136 (2019), pp. 289-328 | DOI | MR
[2] Bigalois extensions and the graph isomorphism game, Comm. Math. Phys., Volume 375 (2020) no. 3, pp. 1777-1809 | DOI | MR
[3] Some new strongly regular graphs, Combinatorica, Volume 9 (1989) no. 4, pp. 339-344 | DOI | MR
[4] Strongly regular graphs, Encyclopedia of Mathematics and its Applications, 182, Cambridge University Press, Cambridge, 2022, xvii+462 pages | DOI
[5] Quantum isomorphism of graphs from association schemes, J. Combin. Theory Ser. B, Volume 164 (2024), pp. 340-363 | DOI | MR
[6] Constructing cospectral graphs, Aequationes Math., Volume 25 (1982) no. 2-3, pp. 257-268 | DOI | MR
[7] Quantum symmetries of Hadamard matrices, 2022 | arXiv
[8] Nonlocal games and quantum permutation groups, J. Funct. Anal., Volume 279 (2020) no. 5, Paper no. 108592, 44 pages | MR
[9] Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), IEEE (2020), pp. 661-672
[10] Overlarge sets and partial geometries, J. Geom., Volume 60 (1997) no. 1-2, pp. 85-104 | DOI | MR
[11] The Morita theory of quantum graph isomorphisms, Comm. Math. Phys., Volume 365 (2019) no. 2, pp. 797-845 | DOI | MR | Zbl
[12] Solution group representations as quantum symmetries of graphs, J. Lond. Math. Soc. (2), Volume 106 (2022) no. 4, pp. 3379-3410 | DOI | MR
[13] Quantum automorphism groups of finite graphs, Ph. D. Thesis, Saarländische Universitäts-und Landesbibliothek (2020)
[14] SageMath, the Sage Mathematics Software System (Version 8.9) (2019) (https://www.sagemath.org)
[15] Quantum symmetry groups of finite spaces, Comm. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI | MR | Zbl
Cited by Sources: