In this paper, we simplify and generalize formulas for the expansion of rank cluster variables. In particular, we prove an equivalent, but simpler, description of the colored Dyck subpaths framework introduced by Lee and Schiffler. We then prove the conjectured bijectivity of a map constructed by Feiyang Lin between collections of colored Dyck subpaths and compatible pairs, objects introduced by Lee, Li, and Zelevinsky to study the greedy basis. We use this bijection along with Rupel’s expansion formula for quantum greedy basis elements, which sums over compatible pairs, to provide a quantum generalization of Lee and Schiffler’s colored Dyck subpaths formula.
Revised:
Accepted:
Published online:
Mots-clés : rank two cluster algebra, maximal Dyck path, compatible pair, quantum cluster algebra
Burcroff, Amanda 1
@article{ALCO_2024__7_2_529_0, author = {Burcroff, Amanda}, title = {On {Dyck} path expansion formulas for rank 2 cluster variables}, journal = {Algebraic Combinatorics}, pages = {529--553}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {2}, year = {2024}, doi = {10.5802/alco.343}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.343/} }
TY - JOUR AU - Burcroff, Amanda TI - On Dyck path expansion formulas for rank 2 cluster variables JO - Algebraic Combinatorics PY - 2024 SP - 529 EP - 553 VL - 7 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.343/ DO - 10.5802/alco.343 LA - en ID - ALCO_2024__7_2_529_0 ER -
%0 Journal Article %A Burcroff, Amanda %T On Dyck path expansion formulas for rank 2 cluster variables %J Algebraic Combinatorics %D 2024 %P 529-553 %V 7 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.343/ %R 10.5802/alco.343 %G en %F ALCO_2024__7_2_529_0
Burcroff, Amanda. On Dyck path expansion formulas for rank 2 cluster variables. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 529-553. doi : 10.5802/alco.343. https://alco.centre-mersenne.org/articles/10.5802/alco.343/
[1] Combinatorics on words: Christoffel words and repetitions in words, CRM Monograph Series, 27, American Mathematical Society, Providence, RI, 2009
[2] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 595-616 | DOI | MR
[3] The greedy basis equals the theta basis: a rank two haiku, J. Combin. Theory Ser. A, Volume 145 (2017), pp. 150-171 | DOI | MR
[4] Introduction to Cluster Algebras. Chapters 1–3, 2016 | arXiv
[5] Cluster algebras I: Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR
[6] Cluster algebras IV: Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR
[7] Greedy bases in rank 2 quantum cluster algebras, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9712-9716 | MR
[8] Greedy elements in rank 2 cluster algebras, Selecta Math. (N.S.), Volume 20 (2014) no. 1, pp. 57-82 | MR
[9] Proof of a positivity conjecture of M. Kontsevich on non-commutative cluster variables, Compos. Math., Volume 148 (2012) no. 6, pp. 1821-1832 | MR
[10] A combinatorial formula for rank 2 cluster variables, J. Algebraic Combin., Volume 37 (2013) no. 1, pp. 67-85 | MR
[11] Positivity for cluster algebras of rank 3, Publ. Res. Inst. Math. Sci., Volume 49 (2013) no. 3, pp. 601-649 | MR
[12] Positivity for cluster algebras, Ann. of Math. (2), Volume 182 (2015) no. 1, pp. 73-125 | MR
[13] On rank-two and affine cluster algebras, Senior Thesis, Harvey Mudd College (2021) https://scholarship.claremont.edu/hmc_theses/251/ (Accessed 2023-11-07)
[14] On a quantum analog of the Caldero–Chapoton formula, Int. Math. Res. Not. IMRN, Volume 2011 (2011) no. 14, pp. 3207-3236 | MR | Zbl
[15] Proof of the Kontsevich non-commutative cluster positivity conjecture, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 21-22, pp. 929-932 | DOI | Numdam | MR | Zbl
[16] Rank two non-commutative Laurent phenomenon and pseudo-positivity, Algebr. Comb., Volume 2 (2019) no. 6, pp. 1239-1273 | Numdam | MR | Zbl
Cited by Sources: