Cofibration category of digraphs for path homology
Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 475-514.

We prove that the category of directed graphs and graph maps carries a cofibration category structure in which the weak equivalences are the graph maps inducing isomorphisms on path homology.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/alco.341
Classification: 18N45, 55U35, 05C20, 18N40
Keywords: cofibration, cofibration category, category, directed graph, path homology
Carranza, Daniel 1; Doherty, Brandon 2; Kapulkin, Krzyzstof 3; Opie, Morgan 4; Sarazola, Maru 5; Wong, Liang Ze 6

1 Johns Hopkins University Department of Mathematics 3400 N. Charles Street Baltimore MD 21218 (USA)
2 Florida State University Department of Mathematics 208 Love Building, 1017 Academic Way Tallahassee FL 32306 (USA)
3 University of Western Ontario Department of Mathematics 1151 Richmond Street London, Ont. N6A 5B7, Canada
4 University of California Los Angeles Department of Mathematics 520 Portola Plaza Los Angeles CA 90095 (USA)
5 University of Minnesota School of Mathematics 206 Church St SE Minneapolis MN 55455 (USA)
6 Institute of High Performance Computing (IHPC) Agency for Science, Technology and Research (A*STAR) 1 Fusionopolis Way, #16-16 Connexis Singapore 138632, Republic of Singapore
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_2_475_0,
     author = {Carranza, Daniel and Doherty, Brandon and Kapulkin, Krzyzstof and Opie, Morgan and Sarazola, Maru and Wong, Liang Ze},
     title = {Cofibration category of digraphs for path homology},
     journal = {Algebraic Combinatorics},
     pages = {475--514},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {2},
     year = {2024},
     doi = {10.5802/alco.341},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.341/}
}
TY  - JOUR
AU  - Carranza, Daniel
AU  - Doherty, Brandon
AU  - Kapulkin, Krzyzstof
AU  - Opie, Morgan
AU  - Sarazola, Maru
AU  - Wong, Liang Ze
TI  - Cofibration category of digraphs for path homology
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 475
EP  - 514
VL  - 7
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.341/
DO  - 10.5802/alco.341
LA  - en
ID  - ALCO_2024__7_2_475_0
ER  - 
%0 Journal Article
%A Carranza, Daniel
%A Doherty, Brandon
%A Kapulkin, Krzyzstof
%A Opie, Morgan
%A Sarazola, Maru
%A Wong, Liang Ze
%T Cofibration category of digraphs for path homology
%J Algebraic Combinatorics
%D 2024
%P 475-514
%V 7
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.341/
%R 10.5802/alco.341
%G en
%F ALCO_2024__7_2_475_0
Carranza, Daniel; Doherty, Brandon; Kapulkin, Krzyzstof; Opie, Morgan; Sarazola, Maru; Wong, Liang Ze. Cofibration category of digraphs for path homology. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 475-514. doi : 10.5802/alco.341. https://alco.centre-mersenne.org/articles/10.5802/alco.341/

[1] Asao, Yasuhiko Magnitude homology and path homology, Bull. Lond. Math. Soc., Volume 55 (2023) no. 1, pp. 375-398 | DOI | MR

[2] Avigad, Jeremy; Kapulkin, Krzysztof; Lumsdaine, Peter LeFanu Homotopy limits in type theory, Math. Structures Comput. Sci., Volume 25 (2015) no. 5, pp. 1040-1070 | DOI | MR

[3] Babson, Eric; Barcelo, Hélène; de Longueville, Mark; Laubenbacher, Reinhard Homotopy theory of graphs, J. Algebraic Combin., Volume 24 (2006) no. 1, pp. 31-44 | DOI | MR

[4] Barcelo, Hélène; Capraro, Valerio; White, Jacob A. Discrete homology theory for metric spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 5, pp. 889-905 | DOI | MR

[5] Barcelo, Hélène; Greene, Curtis; Jarrah, Abdul Salam; Welker, Volkmar Discrete cubical and path homologies of graphs, Algebr. Comb., Volume 2 (2019) no. 3, pp. 417-437 | DOI | Numdam | MR

[6] Baues, Hans Joachim Algebraic homotopy, Cambridge Studies in Advanced Mathematics, 15, Cambridge University Press, 1989, xx+466 pages | DOI | MR

[7] Brown, Kenneth S. Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc., Volume 186 (1973), pp. 419-458 | DOI | MR | Zbl

[8] Carranza, Daniel; Doherty, Brandon; Kapulkin, Krzysztof; Opie, Morgan; Sarazola, Maru; Wong, Liang Ze Python script for computing path homology of digraphs, 2022 https://github.com/sheaves/path_homology

[9] Carranza, Daniel; Kapulkin, Krzysztof Cubical setting for discrete homotopy theory, revisited, 2022 | arXiv

[10] Chowdhury, Samir Metric and Topological Approaches to Network Data Analysis, ProQuest LLC, Ann Arbor, MI, 2019, 242 pages Thesis (Ph.D.)–The Ohio State University | MR

[11] Chowdhury, Samir; Mémoli, Facundo Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA (2018), pp. 1152-1169 | DOI | Zbl

[12] Dochtermann, Anton Hom complexes and homotopy theory in the category of graphs, European J. Combin., Volume 30 (2009) no. 2, pp. 490-509 | DOI | MR

[13] Goyal, Shuchita; Santhanam, Rekha (Lack of) model structures on the category of graphs, Appl. Categ. Structures, Volume 29 (2021) no. 4, pp. 671-683 | DOI | MR

[14] Grigor’yan, Alexander; Jimenez, Rolando; Muranov, Yuri; Yau, Shing-Tung On the path homology theory of digraphs and Eilenberg-Steenrod axioms, Homology Homotopy Appl., Volume 20 (2018) no. 2, pp. 179-205 | DOI | MR | Zbl

[15] Grigor’yan, Alexander; Lin, Yong; Muranov, Yuri; Yau, Shing-Tung Homologies of path complexes and digraphs, 2013 | arXiv

[16] Grigor’yan, Alexander; Lin, Yong; Muranov, Yuri; Yau, Shing-Tung Homotopy theory for digraphs, Pure Appl. Math. Q., Volume 10 (2014) no. 4, pp. 619-674 | DOI | MR

[17] Grigor’yan, Alexander; Lin, Yong; Muranov, Yuri; Yau, Shing-Tung Path complexes and their homologies, Fundam. Prikl. Mat., Volume 21 (2016) no. 5, pp. 79-128 | MR

[18] Grigor’yan, Alexander; Muranov, Yuri; Yau, Shing-Tung Homologies of digraphs and Künneth formulas, Comm. Anal. Geom., Volume 25 (2017) no. 5, pp. 969-1018 | DOI

[19] Hepworth, Richard; Willerton, Simon Categorifying the magnitude of a graph, Homology Homotopy Appl., Volume 19 (2017) no. 2, pp. 31-60 | DOI | MR | Zbl

[20] Hovey, Mark Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999, xii+209 pages

[21] Ivanov, Sergei O.; Pavutnitskiy, Fedor Simplicial approach to path homology of quivers, marked categories, groups and algebras, J. Lond. Math. Soc. (2), Volume 109 (2024) no. 1, Paper no. e12812, 68 pages | MR

[22] Kapulkin, Krzysztof; Szumiło, Karol Quasicategories of frames of cofibration categories, Appl. Categ. Structures, Volume 25 (2017) no. 3, pp. 323-347 | DOI | MR

[23] Leinster, Tom The magnitude of a graph, Math. Proc. Cambridge Philos. Soc., Volume 166 (2019) no. 2, pp. 247-264 | DOI | MR

[24] Quillen, Daniel G. Homotopical algebra, Lecture Notes in Mathematics, 43, Springer-Verlag, 1967, iv+156 pages | DOI | MR

[25] Rădulescu-Banu, Andrei Cofibrations in homotopy theory, 2009 | arXiv

[26] Strøm, Arne The homotopy category is a homotopy category, Arch. Math. (Basel), Volume 23 (1972), pp. 435-441 | DOI | MR

[27] Szumiło, Karol Two models for the homotopy theory of cocomplete homotopy theories, Ph. D. Thesis, University of Bonn (2014) | arXiv

Cited by Sources: