We prove that the category of directed graphs and graph maps carries a cofibration category structure in which the weak equivalences are the graph maps inducing isomorphisms on path homology.
Accepted:
Revised after acceptance:
Published online:
Mots-clés : cofibration, cofibration category, category, directed graph, path homology
Carranza, Daniel 1; Doherty, Brandon 2; Kapulkin, Krzysztof 3; Opie, Morgan 4; Sarazola, Maru 5; Wong, Liang Ze 6
@article{ALCO_2024__7_2_475_0, author = {Carranza, Daniel and Doherty, Brandon and Kapulkin, Krzysztof and Opie, Morgan and Sarazola, Maru and Wong, Liang Ze}, title = {Cofibration category of digraphs for path homology}, journal = {Algebraic Combinatorics}, pages = {475--514}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {2}, year = {2024}, doi = {10.5802/alco.341}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.341/} }
TY - JOUR AU - Carranza, Daniel AU - Doherty, Brandon AU - Kapulkin, Krzysztof AU - Opie, Morgan AU - Sarazola, Maru AU - Wong, Liang Ze TI - Cofibration category of digraphs for path homology JO - Algebraic Combinatorics PY - 2024 SP - 475 EP - 514 VL - 7 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.341/ DO - 10.5802/alco.341 LA - en ID - ALCO_2024__7_2_475_0 ER -
%0 Journal Article %A Carranza, Daniel %A Doherty, Brandon %A Kapulkin, Krzysztof %A Opie, Morgan %A Sarazola, Maru %A Wong, Liang Ze %T Cofibration category of digraphs for path homology %J Algebraic Combinatorics %D 2024 %P 475-514 %V 7 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.341/ %R 10.5802/alco.341 %G en %F ALCO_2024__7_2_475_0
Carranza, Daniel; Doherty, Brandon; Kapulkin, Krzysztof; Opie, Morgan; Sarazola, Maru; Wong, Liang Ze. Cofibration category of digraphs for path homology. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 475-514. doi : 10.5802/alco.341. https://alco.centre-mersenne.org/articles/10.5802/alco.341/
[1] Magnitude homology and path homology, Bull. Lond. Math. Soc., Volume 55 (2023) no. 1, pp. 375-398 | DOI | MR
[2] Homotopy limits in type theory, Math. Structures Comput. Sci., Volume 25 (2015) no. 5, pp. 1040-1070 | DOI | MR
[3] Homotopy theory of graphs, J. Algebraic Combin., Volume 24 (2006) no. 1, pp. 31-44 | DOI | MR
[4] Discrete homology theory for metric spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 5, pp. 889-905 | DOI | MR
[5] Discrete cubical and path homologies of graphs, Algebr. Comb., Volume 2 (2019) no. 3, pp. 417-437 | DOI | Numdam | MR
[6] Algebraic homotopy, Cambridge Studies in Advanced Mathematics, 15, Cambridge University Press, 1989, xx+466 pages | DOI | MR
[7] Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc., Volume 186 (1973), pp. 419-458 | DOI | MR | Zbl
[8] Python script for computing path homology of digraphs, 2022 https://github.com/sheaves/path_homology
[9] Cubical setting for discrete homotopy theory, revisited, 2022 | arXiv
[10] Metric and Topological Approaches to Network Data Analysis, ProQuest LLC, Ann Arbor, MI, 2019, 242 pages Thesis (Ph.D.)–The Ohio State University | MR
[11] Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA (2018), pp. 1152-1169 | DOI | Zbl
[12] Hom complexes and homotopy theory in the category of graphs, European J. Combin., Volume 30 (2009) no. 2, pp. 490-509 | DOI | MR
[13] (Lack of) model structures on the category of graphs, Appl. Categ. Structures, Volume 29 (2021) no. 4, pp. 671-683 | DOI | MR
[14] On the path homology theory of digraphs and Eilenberg-Steenrod axioms, Homology Homotopy Appl., Volume 20 (2018) no. 2, pp. 179-205 | DOI | MR | Zbl
[15] Homologies of path complexes and digraphs, 2013 | arXiv
[16] Homotopy theory for digraphs, Pure Appl. Math. Q., Volume 10 (2014) no. 4, pp. 619-674 | DOI | MR
[17] Path complexes and their homologies, Fundam. Prikl. Mat., Volume 21 (2016) no. 5, pp. 79-128 | MR
[18] Homologies of digraphs and Künneth formulas, Comm. Anal. Geom., Volume 25 (2017) no. 5, pp. 969-1018 | DOI
[19] Categorifying the magnitude of a graph, Homology Homotopy Appl., Volume 19 (2017) no. 2, pp. 31-60 | DOI | MR | Zbl
[20] Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999, xii+209 pages
[21] Simplicial approach to path homology of quivers, marked categories, groups and algebras, J. Lond. Math. Soc. (2), Volume 109 (2024) no. 1, Paper no. e12812, 68 pages | MR
[22] Quasicategories of frames of cofibration categories, Appl. Categ. Structures, Volume 25 (2017) no. 3, pp. 323-347 | DOI | MR
[23] The magnitude of a graph, Math. Proc. Cambridge Philos. Soc., Volume 166 (2019) no. 2, pp. 247-264 | DOI | MR
[24] Homotopical algebra, Lecture Notes in Mathematics, 43, Springer-Verlag, 1967, iv+156 pages | DOI | MR
[25] Cofibrations in homotopy theory, 2009 | arXiv
[26] The homotopy category is a homotopy category, Arch. Math. (Basel), Volume 23 (1972), pp. 435-441 | DOI | MR
[27] Two models for the homotopy theory of cocomplete homotopy theories, Ph. D. Thesis, University of Bonn (2014) | arXiv
Cited by Sources: