We study relations between cluster algebra invariants and link invariants.
First, we show that several constructions of positroid links (permutation links, Richardson links, grid diagram links, plabic graph links) give rise to isotopic links. For a subclass of permutations arising from concave curves, we also provide isotopies with the corresponding Coxeter links.
Second, we associate a point count polynomial to an arbitrary locally acyclic quiver. We conjecture an equality between the top -degree coefficient of the HOMFLY polynomial of a plabic graph link and the point count polynomial of its planar dual quiver. We prove this conjecture for leaf recurrent plabic graphs, which includes reduced plabic graphs and plabic fences as special cases.
Revised:
Accepted:
Published online:
Keywords: plabic graph, quiver, link isotopy, Coxeter link, point count, HOMFLY polynomial, skein relation
Galashin, Pavel 1; Lam, Thomas 2
@article{ALCO_2024__7_2_431_0, author = {Galashin, Pavel and Lam, Thomas}, title = {Plabic links, quivers, and skein relations}, journal = {Algebraic Combinatorics}, pages = {431--474}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {2}, year = {2024}, doi = {10.5802/alco.345}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.345/} }
TY - JOUR AU - Galashin, Pavel AU - Lam, Thomas TI - Plabic links, quivers, and skein relations JO - Algebraic Combinatorics PY - 2024 SP - 431 EP - 474 VL - 7 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.345/ DO - 10.5802/alco.345 LA - en ID - ALCO_2024__7_2_431_0 ER -
Galashin, Pavel; Lam, Thomas. Plabic links, quivers, and skein relations. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 431-474. doi : 10.5802/alco.345. https://alco.centre-mersenne.org/articles/10.5802/alco.345/
[1] Real deformations and complex topology of plane curve singularities, Ann. Fac. Sci. Toulouse Math. (6), Volume 8 (1999) no. 1, pp. 5-23 | Numdam | MR | Zbl
[2] Positive configuration space, Comm. Math. Phys., Volume 384 (2021) no. 2, pp. 909-954 | DOI | MR
[3] The geometry of spherical curves and quaternion algebra, Uspekhi Mat. Nauk, Volume 50 (1995) no. 1(301), pp. 3-68 | DOI | MR | Zbl
[4] Knot theory and cluster algebras, Adv. Math., Volume 408 (2022), Paper no. 108609, 45 pages | DOI | MR | Zbl
[5] A shuffle theorem for paths under any line, Forum Math. Pi, Volume 11 (2023), Paper no. e5, 38 pages | DOI | MR
[6] On the Hall algebra of an elliptic curve, I, Duke Math. J., Volume 161 (2012) no. 7, pp. 1171-1231 | DOI | MR | Zbl
[7] Infinitely many Lagrangian fillings, Ann. of Math. (2), Volume 195 (2022) no. 1, pp. 207-249 | DOI | MR
[8] Cluster structures on braid varieties, 2022 | arXiv
[9] Positroid Links and Braid varieties, 2024 | arXiv
[10] Microlocal theory of Legendrian links and cluster algebras, Geom. Topol., Volume 28 (2024) no. 2, pp. 901-1000 | DOI | MR | Zbl
[11] On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., Volume 79 (1985) no. 3, pp. 499-511 | DOI | MR | Zbl
[12] Morsifications and mutations, J. Lond. Math. Soc. (2), Volume 105 (2022) no. 4, pp. 2478-2554 | DOI | MR
[13] Introduction to Cluster Algebras. Chapters 1-3, 2021 | arXiv
[14] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR
[15] A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.), Volume 12 (1985) no. 2, pp. 239-246 | DOI | MR
[16] Positroid Catalan numbers, 2021 | arXiv
[17] Positroids, knots, and -Catalan numbers, Sém. Lothar. Combin., Volume 85B (2021), Paper no. 54, 12 pages | MR | Zbl
[18] Monotone links in DAHA and EHA, 2023 | arXiv
[19] Positroid varieties and cluster algebras, Ann. Sci. Éc. Norm. Supér. (4), Volume 56 (2023) no. 3, pp. 859-884 | DOI | MR
[20] Braid variety cluster structures, II: general type, 2023 | arXiv
[21] Braid variety cluster structures, I: 3D plabic graphs, 2022 | arXiv
[22] On the irreducible characters of Hecke algebras, Adv. Math., Volume 102 (1993) no. 1, pp. 79-94 | DOI | MR
[23] Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9), Volume 104 (2015) no. 3, pp. 403-435 | DOI | MR
[24] Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, Adv. Math., Volume 378 (2021), Paper no. 107542, 115 pages | DOI | MR | Zbl
[25] Braids, complex volume and cluster algebras, Algebr. Geom. Topol., Volume 15 (2015) no. 4, pp. 2175-2194 | DOI | MR | Zbl
[26] Visualization of A’Campo’s fibered links and unknotting operation, Topology Appl., Volume 121 (2002) no. 1, pp. 287-304 | DOI | MR | Zbl
[27] The Knot Atlas: The Thistlethwaite Link Table http://katlas.org/wiki/The_Thistlethwaite_Link_Table
[28] The Knot Atlas: The Rolfsen Knot Table http://katlas.org/wiki/The_Rolfsen_Knot_Table
[29] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math., Volume 18 (2007) no. 8, pp. 869-885 | DOI | MR
[30] Matrix factorizations and link homology, Fund. Math., Volume 199 (2008) no. 1, pp. 1-91 | DOI | MR | Zbl
[31] Matrix factorizations and link homology. II, Geom. Topol., Volume 12 (2008) no. 3, pp. 1387-1425 | DOI | MR | Zbl
[32] Positroid varieties: juggling and geometry, Compos. Math., Volume 149 (2013) no. 10, pp. 1710-1752 | DOI | MR
[33] Totally nonnegative Grassmannian and Grassmann polytopes, Current developments in mathematics 2014, Int. Press, Somerville, MA, 2016, pp. 51-152 | MR | Zbl
[34] Cohomology of cluster varieties I: Locally acyclic case, Algebra Number Theory, Volume 16 (2022) no. 1, pp. 179-230 | DOI | MR
[35] Cohomology of cluster varieties II: Acyclic case, J. Lond. Math. Soc. (2), Volume 108 (2023) no. 6, pp. 2377-2414 | MR | Zbl
[36] Cluster structures on strata of flag varieties, Adv. Math., Volume 300 (2016), pp. 190-228 | DOI | MR | Zbl
[37] Cluster algebras and Jones polynomials, Selecta Math. (N.S.), Volume 25 (2019) no. 4, Paper no. 58, 41 pages | DOI | MR | Zbl
[38] An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer-Verlag, New York, 1997, x+201 pages | DOI | MR
[39] KnotInfo: Table of Knot Invariants, 2022
[40] Cell decompositions of character varieties, 2019 | arXiv
[41] Locally acyclic cluster algebras, Adv. Math., Volume 233 (2013), pp. 207-247 | DOI | MR | Zbl
[42] Skein and cluster algebras of marked surfaces, Quantum Topol., Volume 7 (2016) no. 3, pp. 435-503 | DOI | MR
[43] Cluster algebras of Grassmannians are locally acyclic, Proc. Amer. Math. Soc., Volume 144 (2016) no. 8, pp. 3267-3281 | DOI | MR
[44] Homfly-PT homology of Coxeter links, Transform. Groups, Volume 28 (2023) no. 3, pp. 1245-1275 | DOI | MR
[45] Grid homology for knots and links, Mathematical Surveys and Monographs, 208, American Mathematical Society, Providence, RI, 2015, x+410 pages | DOI | MR
[46] Total positivity, Grassmannians, and networks (2006) | arXiv
[47] Conway algebras and skein equivalence of links, Proc. Amer. Math. Soc., Volume 100 (1987) no. 4, pp. 744-748 | DOI | MR | Zbl
[48] Knots and links, Mathematics Lecture Series, 7, Publish or Perish, Inc., Houston, TX, 1990, xiv+439 pages | MR
[49] Thurston-Bennequin number, Kauffman polynomial, and ruling invariants of a Legendrian link: the Fuchs conjecture and beyond, Int. Math. Res. Not. (2006), Paper no. 78591, 15 pages | DOI | MR
[50] The elliptic Hall algebra and the -theory of the Hilbert scheme of , Duke Math. J., Volume 162 (2013) no. 2, pp. 279-366 | DOI | MR
[51] Grassmannians and cluster algebras, Proc. London Math. Soc. (3), Volume 92 (2006) no. 2, pp. 345-380 | DOI | MR | Zbl
[52] Cluster structures in Schubert varieties in the Grassmannian, Proc. Lond. Math. Soc. (3), Volume 119 (2019) no. 6, pp. 1694-1744 | DOI | MR
[53] Cluster structures on double Bott-Samelson cells, Forum Math. Sigma, Volume 9 (2021), Paper no. e66, 89 pages | DOI | MR | Zbl
[54] Cluster varieties from Legendrian knots, Duke Math. J., Volume 168 (2019) no. 15, pp. 2801-2871 | DOI | MR
[55] Legendrian knots and constructible sheaves, Invent. Math., Volume 207 (2017) no. 3, pp. 1031-1133 | DOI | MR
[56] From the Hecke Category to the Unipotent Locus, 2021 | arXiv
[57] The Conway and Kauffman modules of a solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 167 (1988) no. 6, p. 79-89, 190 | DOI | MR
Cited by Sources: