We introduce an additive basis of the integral cohomology ring of the Peterson variety which reflects the geometry of certain subvarieties of the Peterson variety. We explain the positivity of the structure constants from a geometric viewpoint, and provide a manifestly positive combinatorial formula for them. We also prove that our basis coincides with the additive basis introduced by Harada–Tymoczko.
Revised:
Accepted:
Published online:
Keywords: Peterson variety, Peterson Schubert calculus
Abe, Hiraku 1; Horiguchi, Tatsuya 2; Kuwata, Hideya 3; Zeng, Haozhi 4
@article{ALCO_2024__7_2_383_0, author = {Abe, Hiraku and Horiguchi, Tatsuya and Kuwata, Hideya and Zeng, Haozhi}, title = {Geometry of {Peterson} {Schubert} calculus in type {A} and left-right diagrams}, journal = {Algebraic Combinatorics}, pages = {383--412}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {2}, year = {2024}, doi = {10.5802/alco.342}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.342/} }
TY - JOUR AU - Abe, Hiraku AU - Horiguchi, Tatsuya AU - Kuwata, Hideya AU - Zeng, Haozhi TI - Geometry of Peterson Schubert calculus in type A and left-right diagrams JO - Algebraic Combinatorics PY - 2024 SP - 383 EP - 412 VL - 7 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.342/ DO - 10.5802/alco.342 LA - en ID - ALCO_2024__7_2_383_0 ER -
%0 Journal Article %A Abe, Hiraku %A Horiguchi, Tatsuya %A Kuwata, Hideya %A Zeng, Haozhi %T Geometry of Peterson Schubert calculus in type A and left-right diagrams %J Algebraic Combinatorics %D 2024 %P 383-412 %V 7 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.342/ %R 10.5802/alco.342 %G en %F ALCO_2024__7_2_383_0
Abe, Hiraku; Horiguchi, Tatsuya; Kuwata, Hideya; Zeng, Haozhi. Geometry of Peterson Schubert calculus in type A and left-right diagrams. Algebraic Combinatorics, Volume 7 (2024) no. 2, pp. 383-412. doi : 10.5802/alco.342. https://alco.centre-mersenne.org/articles/10.5802/alco.342/
[1] Geometry of Hessenberg varieties with applications to Newton-Okounkov bodies, Selecta Math. (N.S.), Volume 24 (2018) no. 3, pp. 2129-2163 | DOI | MR
[2] Geometry of regular Hessenberg varieties, Transform. Groups, Volume 25 (2020) no. 2, pp. 305-333 | DOI | MR
[3] Fano and weak Fano Hessenberg varieties, Michigan Math. J., Volume 73 (2023) no. 3, pp. 511-555 | DOI | MR
[4] The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A, Int. Math. Res. Not. IMRN (2019) no. 17, pp. 5316-5388 | DOI | MR
[5] The integral cohomology rings of Peterson varieties in type A, 2022 | arXiv
[6] Hessenberg varieties and hyperplane arrangements, J. Reine Angew. Math., Volume 764 (2020), pp. 241-286 | DOI | MR
[7] Schubert polynomials and classes of Hessenberg varieties, J. Algebra, Volume 323 (2010) no. 10, pp. 2605-2623 | DOI | MR | Zbl
[8] The Peterson variety and the wonderful compactification, Represent. Theory, Volume 21 (2017), pp. 132-150 | DOI | MR
[9] A Giambelli formula for the -equivariant cohomology of type Peterson varieties, Involve, Volume 5 (2012) no. 2, pp. 115-132 | DOI | MR
[10] Log-concavity of matroid h-vectors and mixed Eulerian numbers, Duke Math. J., Volume 172 (2023) no. 18, pp. 3475-3520 | DOI | MR | Zbl
[11] Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties (Trends Math.), Birkhäuser, Basel, 2005, pp. 33-85 | DOI | MR | Zbl
[12] Hessenberg varieties, Trans. Amer. Math. Soc., Volume 332 (1992) no. 2, pp. 529-534 | DOI | MR
[13] Combinatorics of equivariant cohomology: Flags and regular nilpotent Hessenberg varieties, Ph. D. Thesis, University of Massachusetts (2015)
[14] Monk’s rule and Giambelli’s formula for Peterson varieties of all Lie types, J. Algebraic Combin., Volume 41 (2015) no. 2, pp. 539-575 | DOI | MR
[15] The equivariant cohomology rings of Peterson varieties, J. Math. Soc. Japan, Volume 67 (2015) no. 3, pp. 1147-1159 | DOI | MR
[16] Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR
[17] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI | MR
[18] A positive formula for type A Peterson Schubert calculus, Matematica, Volume 1 (2022) no. 3, pp. 618-665 | DOI | MR | Zbl
[19] The equivariant cohomology rings of Peterson varieties in all Lie types, Canad. Math. Bull., Volume 58 (2015) no. 1, pp. 80-90 | DOI | MR
[20] A positive Monk formula in the -equivariant cohomology of type Peterson varieties, Proc. Lond. Math. Soc. (3), Volume 103 (2011) no. 1, pp. 40-72 | DOI | MR
[21] Mixed Eulerian Numbers and Peterson Schubert Calculus, Int. Math. Res. Not. IMRN (2024) no. 2, pp. 1422-1471 | DOI | MR | Zbl
[22] Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York-Heidelberg, 1975, xiv+247 pages | MR
[23] Schubert calculus and the homology of the Peterson variety, Electron. J. Combin., Volume 22 (2015) no. 2, Paper no. 2.26, 12 pages | DOI | MR | Zbl
[24] Intersection theory of the Peterson variety and certain singularities of Schubert varieties, Geom. Dedicata, Volume 180 (2016), pp. 95-116 | DOI | MR | Zbl
[25] Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight , Selecta Math. (N.S.), Volume 2 (1996) no. 1, pp. 43-91 | DOI | MR
[26] Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004, xviii+387 pages | DOI | MR
[27] Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974, vii+331 pages | MR
[28] The permutahedral variety, mixed Eulerian numbers, and principal specializations of Schubert polynomials, Int. Math. Res. Not. IMRN (2023) no. 5, pp. 3615-3670 | DOI | MR | Zbl
[29] Quantum cohomology of , 1997 (lecture course, M.I.T., spring term)
[30] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR
[31] A mirror construction for the totally nonnegative part of the Peterson variety, Nagoya Math. J., Volume 183 (2006), pp. 105-142 | DOI | MR | Zbl
[32] Representations on Hessenberg varieties and Young’s rule, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (Discrete Math. Theor. Comput. Sci. Proc.), Volume AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011, pp. 903-914 | MR | Zbl
[33] Linear conditions imposed on flag varieties, Amer. J. Math., Volume 128 (2006) no. 6, pp. 1587-1604 | DOI | MR | Zbl
Cited by Sources: