We define and study a generalization of the Littlewood–Richardson (LR) coefficients, which we call the flagged skew LR coefficients. These subsume several previously studied extensions of the LR coefficients. We establish the saturation property for these coefficients, generalizing results of Knutson-Tao and Kushwaha-Raghavan-Viswanath.
Revised:
Accepted:
Published online:
Mots-clés : Skew Hives, Skew GT Patterns, Saturation, Flagged Littlewood–Richardson Coefficients, Crystals
Kundu, Siddheswar 1; Raghavan, K.N. 1; Sathish Kumar, V. 1; Viswanath, Sankaran 1
@article{ALCO_2024__7_3_659_0, author = {Kundu, Siddheswar and Raghavan, K.N. and Sathish Kumar, V. and Viswanath, Sankaran}, title = {Saturation for {Flagged} {Skew} {Littlewood{\textendash}Richardson} coefficients}, journal = {Algebraic Combinatorics}, pages = {659--678}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {3}, year = {2024}, doi = {10.5802/alco.357}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.357/} }
TY - JOUR AU - Kundu, Siddheswar AU - Raghavan, K.N. AU - Sathish Kumar, V. AU - Viswanath, Sankaran TI - Saturation for Flagged Skew Littlewood–Richardson coefficients JO - Algebraic Combinatorics PY - 2024 SP - 659 EP - 678 VL - 7 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.357/ DO - 10.5802/alco.357 LA - en ID - ALCO_2024__7_3_659_0 ER -
%0 Journal Article %A Kundu, Siddheswar %A Raghavan, K.N. %A Sathish Kumar, V. %A Viswanath, Sankaran %T Saturation for Flagged Skew Littlewood–Richardson coefficients %J Algebraic Combinatorics %D 2024 %P 659-678 %V 7 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.357/ %R 10.5802/alco.357 %G en %F ALCO_2024__7_3_659_0
Kundu, Siddheswar; Raghavan, K.N.; Sathish Kumar, V.; Viswanath, Sankaran. Saturation for Flagged Skew Littlewood–Richardson coefficients. Algebraic Combinatorics, Volume 7 (2024) no. 3, pp. 659-678. doi : 10.5802/alco.357. https://alco.centre-mersenne.org/articles/10.5802/alco.357/
[1] Extremal tensor products of Demazure crystals, Algebr. Represent. Theory, Volume 27 (2024) no. 1, pp. 627-638 | DOI | MR | Zbl
[2] The saturation conjecture (after A. Knutson and T. Tao), Enseign. Math. (2), Volume 46 (2000) no. 1-2, pp. 43-60 | MR | Zbl
[3] Crystal bases: representations and combinatorics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | DOI | MR
[4] Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR
[5] A decomposition theorem for Demazure crystals, J. Algebra, Volume 265 (2003) no. 2, pp. 562-578 | DOI | MR | Zbl
[6] The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J., Volume 71 (1993) no. 3, pp. 839-858 | DOI | MR | Zbl
[7] Decomposition of tensor products of Demazure crystals, J. Algebra, Volume 546 (2020), pp. 641-678 | DOI | MR | Zbl
[8] The saturation problem for refined Littlewood-Richardson coefficients, Sém. Lothar. Combin., Volume 85B (2021), Paper no. 52, 12 pages | MR | Zbl
[9] The saturation problem for refined Littlewood–Richardson coefficients, 2022 | arXiv
[10] Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) (IMA Vol. Math. Appl.), Volume 19, Springer, New York, 1990, pp. 125-144 | Zbl
[11] Skew Gelfand–Tsetlin Patterns, Lattice Permutations, And Skew Pattern Polynomials, Symmetry and Structural Properties of Condensed Matter: Proceedings of the 7th International School on Theoretical Physics, Myczkowce, Poland, 11–18 September 2002, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2003, pp. 241-264 | DOI
[12] Chains in the Bruhat order, J. Algebraic Combin., Volume 29 (2009) no. 2, pp. 133-174 | DOI | MR | Zbl
[13] Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A, Volume 70 (1995) no. 1, pp. 107-143 | DOI | MR | Zbl
[14] Plactification, J. Algebraic Combin., Volume 4 (1995) no. 4, pp. 331-351 | DOI | MR | Zbl
[15] Percentage-avoiding, northwest shapes and peelable tableaux, J. Combin. Theory Ser. A, Volume 82 (1998) no. 1, pp. 1-73 | DOI | MR | Zbl
[16] A direct way to find the right key of a semistandard Young tableau, Ann. Comb., Volume 17 (2013) no. 2, pp. 393-400 | DOI | MR | Zbl
[17] A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, J. Algebra, Volume 69 (1981) no. 1, pp. 82-94 | DOI | MR | Zbl
Cited by Sources: