We determine a set of necessary conditions on a partition-indexed family of complex numbers to be the “highest coefficients” of a positive and symmetric multi-faced universal product, i.e. the product associated with a multi-faced version of noncommutative stochastic independence, such as bifreeness. The highest coefficients of a universal product are the weights of the moment-cumulant relation for its associated independence. We show that these conditions are almost sufficient, in the sense that whenever the conditions are satisfied, one can associate a (automatically unique) symmetric universal product with the prescribed highest coefficients. Furthermore, we give a quite explicit description of such families of coefficients, thereby producing a list of candidates that must contain all positive symmetric universal products. We discover in this way four (three up to trivial face-swapping) previously unknown moment-cumulant relations that give rise to symmetric universal products; to decide whether they are positive, and thus give rise to independences which can be used in an operator algebraic framework, remains an open problem.
Revised:
Accepted:
Published online:
Mots-clés : noncommutative probability, multi-faced independence, cumulants, set partitions
Gerhold, Malte 1; Varšo, Philipp 
@article{ALCO_2024__7_3_679_0, author = {Gerhold, Malte and Var\v{s}o, Philipp}, title = {Towards a classification of multi-faced independences: a combinatorial approach}, journal = {Algebraic Combinatorics}, pages = {679--711}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {3}, year = {2024}, doi = {10.5802/alco.356}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.356/} }
TY - JOUR AU - Gerhold, Malte AU - Varšo, Philipp TI - Towards a classification of multi-faced independences: a combinatorial approach JO - Algebraic Combinatorics PY - 2024 SP - 679 EP - 711 VL - 7 IS - 3 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.356/ DO - 10.5802/alco.356 LA - en ID - ALCO_2024__7_3_679_0 ER -
%0 Journal Article %A Gerhold, Malte %A Varšo, Philipp %T Towards a classification of multi-faced independences: a combinatorial approach %J Algebraic Combinatorics %D 2024 %P 679-711 %V 7 %N 3 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.356/ %R 10.5802/alco.356 %G en %F ALCO_2024__7_3_679_0
Gerhold, Malte; Varšo, Philipp. Towards a classification of multi-faced independences: a combinatorial approach. Algebraic Combinatorics, Volume 7 (2024) no. 3, pp. 679-711. doi : 10.5802/alco.356. https://alco.centre-mersenne.org/articles/10.5802/alco.356/
[1] Non-commutative notions of stochastic independence, Math. Proc. Cambridge Philos. Soc., Volume 133 (2002) no. 3, pp. 531-561 | DOI | MR | Zbl
[2] Quantum Lévy processes on dual groups, Math. Z., Volume 251 (2005) no. 1, pp. 147-165 | DOI | MR | Zbl
[3] On two-faced families of non-commutative random variables, Canad. J. Math., Volume 67 (2015) no. 6, pp. 1290-1325 | DOI | MR | Zbl
[4] Combinatorics of NC-probability spaces with independent constants, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 25 (2022) no. 2, Paper no. 2250009, 20 pages | DOI | MR | Zbl
[5] Cumulants, free cumulants and half-shuffles, Proc. Royal Soc. A, Volume 471 (2015) no. 2176, Paper no. 20140843, 18 pages | DOI | MR | Zbl
[6] -noncrossing partitions and cumulants in free probability, Int. Math. Res. Not. IMRN, Volume 2018 (2018) no. 23, pp. 7156-7170 | DOI | MR | Zbl
[7] Lévy processes on quantum groups and dual groups, Quantum independent increment processes. II (Lecture Notes in Math.), Volume 1866, Springer, Berlin, 2006, pp. 161-257 | DOI | MR | Zbl
[8] Schoenberg correspondence for multifaced independence, 2021 | arXiv
[9] Bi-monotone Brownian Motion, Infinite Dimension Analysis, Quantum Probability and Related Topics (Watanabe, Noboru; Accardi, Luigi; Si, Si, eds.) (QP–PQ: Quantum Probab. White Noise Anal.), Volume 32, World Sci. Publ., Hackensack, NJ, 2023 Proceedings of the International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics, QP38 (2017) | DOI
[10] Towards a classification of multi-faced independence: A representation-theoretic approach, J. Funct. Anal., Volume 285 (2023) no. 3, Paper no. 109907 | DOI | MR | Zbl
[11] Classification and GNS-construction for general universal products, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 18 (2015) no. 1, Paper no. 1550004, 29 pages | DOI | MR | Zbl
[12] Categorial independence and Lévy processes, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), Paper no. 075, 27 pages | DOI | MR | Zbl
[13] Bi-monotonic independence for pairs of algebras, J. Theoret. Probab., Volume 33 (2020) no. 1, pp. 533-566 | DOI | MR | Zbl
[14] Bi-Boolean independence for pairs of algebras, Complex Anal. Oper. Theory, Volume 13 (2019) no. 7, pp. 3023-3089 | DOI | MR | Zbl
[15] The monotone cumulants, Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011) no. 4, pp. 1160-1170 | DOI | Numdam | MR | Zbl
[16] Free-Free-Boolean independence for triples of algebras, 2018 | arXiv
[17] Free-Boolean independence for pairs of algebras, J. Funct. Anal., Volume 277 (2019) no. 4, pp. 994-1028 | DOI | MR | Zbl
[18] Non-commutative stochastic independence and cumulants, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 20 (2017) no. 2, Paper no. 1750010, 38 pages | DOI | MR | Zbl
[19] -free probability, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 7 (2004) no. 1, pp. 27-41 | DOI | MR | Zbl
[20] Monotonic independence, monotonic central limit theorem and monotonic law of small numbers, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 4 (2001) no. 1, pp. 39-58 | DOI | MR | Zbl
[21] The five independences as quasi-universal products, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 5 (2002) no. 1, pp. 113-134 | DOI | MR | Zbl
[22] The five independences as natural products, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 6 (2003) no. 3, pp. 337-371 | DOI | MR | Zbl
[23] A simple proof of the classification theorem for positive natural products, Probab. Math. Statist., Volume 33 (2013) no. 2, pp. 315-326 https://www.math.uni.wroc.pl/~pms/files/33.2/Article/33.2.12.pdf | MR | Zbl
[24] Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, 335, Cambridge University Press, Cambridge, 2006, xvi+417 pages | DOI | MR
[25] Schoenberg correspondence on dual groups, Comm. Math. Phys., Volume 328 (2014) no. 2, pp. 849-865 | DOI | MR | Zbl
[26] Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann., Volume 298 (1994) no. 4, pp. 611-628 | DOI | MR | Zbl
[27] On universal products, Free probability theory (Waterloo, ON, 1995) (Fields Inst. Commun.), Volume 12, Amer. Math. Soc., Providence, RI, 1997, pp. 257-266 | DOI | MR | Zbl
[28] Boolean convolution, Free probability theory (Waterloo, ON, 1995) (Fields Inst. Commun.), Volume 12, Amer. Math. Soc., Providence, RI, 1997, pp. 267-279 | DOI | MR | Zbl
[29] Mixtures of classical and free independence, Arch. Math. (Basel), Volume 107 (2016) no. 4, pp. 445-453 | DOI | MR | Zbl
[30] Studies on Positive and Symmetric Two-Faced Universal Products, Ph. D. Thesis, University of Greifswald (2021), 271 + xii pages https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-75524
[31] Symmetries of some reduced free product -algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) (Lecture Notes in Math.), Volume 1132, Springer, Berlin, 1985, pp. 556-588 | DOI | MR | Zbl
[32] Free probability for pairs of faces I, Comm. Math. Phys., Volume 332 (2014) no. 3, pp. 955-980 | DOI | MR | Zbl
[33] An approach to the theory of pressure broadening of spectral lines, Probability and information theory, II (Behara, M.; Krickeberg, K.; Wolfowitz, J., eds.), Springer, Berlin, 1973, p. 19-69. Lecture Notes in Math., Vol. 296 | DOI | MR | Zbl
[34] Interval partitions and pair interactions, Séminaire de Probabilités, IX (Seconde Partie, Univ. Strasbourg, Strasbourg, années universitaires 1973/1974 et 1974/1975), Springer, Berlin, 1975, p. 565-588. Lecture Notes in Math., Vol. 465 | DOI | Numdam | MR | Zbl
Cited by Sources: