We use character polynomials to obtain a positive combinatorial interpretation of the multiplicity of the sign representation in irreducible polynomial representations of indexed by two-column and hook partitions. Our method also yields a positive combinatorial interpretation for the multiplicity of the trivial representation of in an irreducible polynomial representation indexed by a hook partition.
Accepted:
Published online:
Keywords: plethysm, character polynomials, moments, restriction problem, sign-reversing involution
Narayanan, Sridhar 1; Paul, Digjoy 2; Prasad, Amritanshu 3; Srivastava, Shraddha 4
@article{ALCO_2024__7_4_1183_0, author = {Narayanan, Sridhar and Paul, Digjoy and Prasad, Amritanshu and Srivastava, Shraddha}, title = {Some restriction coefficients for the trivial and sign representations}, journal = {Algebraic Combinatorics}, pages = {1183--1195}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.360}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.360/} }
TY - JOUR AU - Narayanan, Sridhar AU - Paul, Digjoy AU - Prasad, Amritanshu AU - Srivastava, Shraddha TI - Some restriction coefficients for the trivial and sign representations JO - Algebraic Combinatorics PY - 2024 SP - 1183 EP - 1195 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.360/ DO - 10.5802/alco.360 LA - en ID - ALCO_2024__7_4_1183_0 ER -
%0 Journal Article %A Narayanan, Sridhar %A Paul, Digjoy %A Prasad, Amritanshu %A Srivastava, Shraddha %T Some restriction coefficients for the trivial and sign representations %J Algebraic Combinatorics %D 2024 %P 1183-1195 %V 7 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.360/ %R 10.5802/alco.360 %G en %F ALCO_2024__7_4_1183_0
Narayanan, Sridhar; Paul, Digjoy; Prasad, Amritanshu; Srivastava, Shraddha. Some restriction coefficients for the trivial and sign representations. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1183-1195. doi : 10.5802/alco.360. https://alco.centre-mersenne.org/articles/10.5802/alco.360/
[1] Symmetric functions in superspace: a compendium of results and open problems (including a SageMath worksheet), 2019 | arXiv
[2] Specht modules decompose as alternating sums of restrictions of Schur modules, Proc. Amer. Math. Soc., Volume 148 (2020) no. 3, pp. 1015-1029 | DOI | MR | Zbl
[3] Classical symmetric functions in superspace, J. Algebraic Combin., Volume 24 (2006) no. 2, pp. 209-238 | DOI | Zbl
[4] Hopf algebra structure of symmetric and quasisymmetric functions in superspace, J. Combin. Theory Ser. A, Volume 166 (2019), pp. 144-170 | DOI | Zbl
[5] Character polynomials, their -analogs and the Kronecker product, Electron. J. Combin., Volume 16 (2009) no. 2, Paper no. 19, 40 pages | DOI | MR | Zbl
[6] Branching from the General Linear Group to the Symmetric Group and the Principal Embedding, Algebr. Combin., Volume 4 (2021) no. 2, pp. 189-200 | DOI | Numdam | Zbl
[7] Lefschetz Theory for Exterior Algebras and Fermionic Diagonal Coinvariants, Int. Math. Res. Not. IMRN, Volume 2022 (2020) no. 4, pp. 2906-2933 | DOI | Zbl
[8] Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Canadian J. Math., Volume 10 (1958), pp. 17-32 | DOI | MR | Zbl
[9] A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl
[10] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR
[11] Character polynomials and the restriction problem, Algebr. Comb., Volume 4 (2021) no. 4, pp. 703-722 | DOI | Numdam | MR | Zbl
[12] Polynomial induction and the restriction problem, Indian J. Pure Appl. Math., Volume 52 (2021) no. 3, pp. 643-651 | DOI | Zbl
[13] Plethysm and the algebra of uniform block permutations, Algebr. Combin., Volume 5 (2022) no. 5, pp. 1165-1203 | DOI | Numdam | Zbl
[14] A combinatorial model for the decomposition of multivariate polynomial rings as -modules, Electron. J. Combin., Volume 27 (2020) no. 3, Paper no. 3.24, 18 pages | DOI | MR | Zbl
[15] Symmetric group characters as symmetric functions, Adv. Math., Volume 390 (2021), Paper no. 107943, 34 pages | DOI | MR | Zbl
[16] The Frobenius Characteristic of Character Polynomials, J. Indian Inst. Sci., Volume 102 (2022) no. 3, pp. 947-959 | DOI | Zbl
[17] Invariants of finite reflection groups, Nagoya Math. J., Volume 22 (1963), pp. 57-64 | DOI | Zbl
[18] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR
[19] Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, Cambridge, 2003, xiv+371 pages | DOI
Cited by Sources: