Cameron–Liebler sets in permutation groups
Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1157-1182.

Consider a group G acting on a set Ω. A (G,Ω)-Cameron–Liebler set is a subset of G, whose indicator function is a linear combination of the indicator functions of the cosets of the point stabilizers. We investigate Cameron–Liebler sets in permutation groups, with a focus on constructions of Cameron–Liebler sets for 2-transitive groups.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.363
Classification: 05C35, 05C69, 20B05
Keywords: Cameron–Liebler sets, permutation groups

D’haeseleer, Jozefien 1; Meagher, Karen 2; Pantangi, Venkata Raghu Tej 2

1 Department of Mathematics: Analysis Logic and Discrete Mathematics Ghent University Belgium
2 Department of Mathematics and Statistics University of Regina Regina Saskatchewan S4S 0A2 Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_4_1157_0,
     author = {D{\textquoteright}haeseleer, Jozefien and Meagher, Karen and Pantangi, Venkata Raghu Tej},
     title = {Cameron{\textendash}Liebler sets in permutation groups},
     journal = {Algebraic Combinatorics},
     pages = {1157--1182},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {4},
     year = {2024},
     doi = {10.5802/alco.363},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.363/}
}
TY  - JOUR
AU  - D’haeseleer, Jozefien
AU  - Meagher, Karen
AU  - Pantangi, Venkata Raghu Tej
TI  - Cameron–Liebler sets in permutation groups
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1157
EP  - 1182
VL  - 7
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.363/
DO  - 10.5802/alco.363
LA  - en
ID  - ALCO_2024__7_4_1157_0
ER  - 
%0 Journal Article
%A D’haeseleer, Jozefien
%A Meagher, Karen
%A Pantangi, Venkata Raghu Tej
%T Cameron–Liebler sets in permutation groups
%J Algebraic Combinatorics
%D 2024
%P 1157-1182
%V 7
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.363/
%R 10.5802/alco.363
%G en
%F ALCO_2024__7_4_1157_0
D’haeseleer, Jozefien; Meagher, Karen; Pantangi, Venkata Raghu Tej. Cameron–Liebler sets in permutation groups. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1157-1182. doi : 10.5802/alco.363. https://alco.centre-mersenne.org/articles/10.5802/alco.363/

[1] Ahmadi, Bahman; Meagher, Karen The Erdős–Ko–Rado property for some permutation groups, Australas. J. Combin., Volume 61 (2015), pp. 23-41 | MR | Zbl

[2] Ahmadi, Bahman; Meagher, Karen The Erdős-Ko-Rado property for some 2-transitive groups, Ann. Comb., Volume 19 (2015) no. 4, pp. 621-640 | DOI | MR | Zbl

[3] Bardestani, Mohammad; Mallahi-Karai, Keivan On the Erdős–Ko–Rado property for finite groups, J. Algebraic Combin., Volume 42 (2015) no. 1, pp. 111-128 | DOI | MR | Zbl

[4] Block, Richard E. On the orbits of collineation groups, Math. Z., Volume 96 (1967), pp. 33-49 | DOI | MR | Zbl

[5] Burnside, W. Theory of groups of finite order, Dover Publications, Inc., New York, 1955, xxiv+512 pages (2d ed) | MR

[6] Cameron, P. J.; Liebler, R. A. Tactical decompositions and orbits of projective groups, Linear Algebra Appl., Volume 46 (1982), pp. 91-102 | DOI | MR | Zbl

[7] Cameron, Peter J.; Ku, C. Y. Intersecting families of permutations, European J. Combin., Volume 24 (2003) no. 7, pp. 881-890 | DOI | MR | Zbl

[8] Cossidente, Antonio; Pavese, Francesco Cameron–Liebler line classes of PG (3,q) admitting PGL (2,q), J. Combin. Theory Ser. A, Volume 167 (2019), pp. 104-120 | DOI | MR | Zbl

[9] De Boeck, M.; D’haeseleer, J. Equivalent definitions for (degree one) Cameron–Liebler classes of generators in finite classical polar spaces, Discrete Math., Volume 343 (2020) no. 1, Paper no. 111642, 13 pages | DOI | MR | Zbl

[10] De Boeck, M.; Rodgers, M.; Storme, L.; Švob, A. Cameron–Liebler sets of generators in finite classical polar spaces, J. Combin. Theory Ser. A, Volume 167 (2019), pp. 340-388 | DOI | MR | Zbl

[11] De Boeck, M.; Storme, L.; Švob, A. The Cameron–Liebler problem for sets, Discrete Math., Volume 339 (2016) no. 2, pp. 470-474 | DOI | MR | Zbl

[12] De Bruyn, Bart; Suzuki, Hiroshi Intriguing sets of vertices of regular graphs, Graphs Combin., Volume 26 (2010) no. 5, pp. 629-646 | DOI | MR | Zbl

[13] D’haeseleer, J.; Mannaert, J.; Storme, L.; Švob, A. Cameron–Liebler line classes in AG(3,q), Finite Fields Appl., Volume 67 (2020), Paper no. 101706, 17 pages | DOI | MR | Zbl

[14] Dixon, John D.; Mortimer, Brian Permutation groups, Graduate Texts in Mathematics, 163, Springer Science & Business Media, 1996, xii+346 pages | DOI | MR

[15] Eberhard, Sean Sharply transitive sets in PGL 2 (K), Adv. Geom., Volume 21 (2021) no. 4, pp. 611-612 | DOI | MR | Zbl

[16] Ellis, David Setwise intersecting families of permutations, J. Combin. Theory Ser. A, Volume 119 (2012) no. 4, pp. 825-849 | DOI | MR | Zbl

[17] Ellis, David; Friedgut, Ehud; Pilpel, Haran Intersecting families of permutations, J. Amer. Math. Soc., Volume 24 (2011) no. 3, pp. 649-682 | DOI | MR | Zbl

[18] Ernst, Alena; Schmidt, Kai-Uwe Intersection theorems for finite general linear groups, Math. Proc. Cambridge Philos. Soc., Volume 175 (2023) no. 1, pp. 129-160 | DOI | MR | Zbl

[19] Filmus, Y.; Ihringer, F. Boolean degree 1 functions on some classical association schemes, J. Combin. Theory Ser. A, Volume 162 (2019), pp. 241-270 | DOI | MR | Zbl

[20] Gavrilyuk, A. L.; Metsch, K. A modular equality for Cameron–Liebler line classes, J. Combin. Theory Ser. A, Volume 127 (2014), pp. 224-242 | DOI | MR | Zbl

[21] Godsil, Christopher; Meagher, Karen Erdős–Ko–Rado Theorems: Algebraic Approaches, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2016 no. 149

[22] Hujdurović, Ademir; Kutnar, Klavdija; Marušič, Dragan; Miklavič, Štefko Intersection density of transitive groups of certain degrees, Algebr. Comb., Volume 5 (2022) no. 2, pp. 289-297 | DOI | Numdam | MR | Zbl

[23] Huppert, Bertram Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967, xii+793 pages | MR

[24] Isaacs, I. M.; Navarro, Gabriel Character sums and double cosets, J. Algebra, Volume 320 (2008) no. 10, pp. 3749-3764 | DOI | MR | Zbl

[25] Isaacs, I. Martin Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976, xii+303 pages | MR

[26] King, Oliver H. The subgroup structure of finite classical groups in terms of geometric configurations, Surveys in combinatorics 2005 (London Math. Soc. Lecture Note Ser.), Volume 327, Cambridge Univ. Press, Cambridge, 2005, pp. 29-56 | DOI | MR | Zbl

[27] Ku, Cheng Yeaw; Wong, Tony W. H. Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin., Volume 14 (2007) no. 1, Paper no. 25, 15 pages | DOI | MR | Zbl

[28] Li, Cai-Heng; Pantangi, Venkata Raghu Tej On the EKR-module property, Algebr. Comb., Volume 7 (2024) no. 2, pp. 577-596 | MR | Zbl

[29] Li, Cai Heng; Song, Shu Jiao; Pantangi, Venkata Raghu Tej Erdős–Ko–Rado problems for permutation groups, 2020 | arXiv

[30] Long, Ling; Plaza, Rafael; Sin, Peter; Xiang, Qing Characterization of intersecting families of maximum size in PSL(2,q), J. Combin. Theory Ser. A, Volume 157 (2018), pp. 461-499 | DOI | MR | Zbl

[31] Meagher, Karen An Erdős–Ko–Rado theorem for the group PSU(3,q), Des. Codes Cryptogr., Volume 87 (2019) no. 4, pp. 717-744 | DOI | MR | Zbl

[32] Meagher, Karen; Razafimahatratra, Andriaherimanana Sarobidy Some Erdős–Ko–Rado results for linear and affine groups of degree two, Art Discrete Appl. Math., Volume 6 (2023) no. 1, Paper no. 1.05, 30 pages | DOI | MR | Zbl

[33] Meagher, Karen; Sin, Peter All 2-transitive groups have the EKR-module property, J. Combin. Theory Ser. A, Volume 177 (2021), Paper no. 105322, 21 pages | DOI | MR | Zbl

[34] Meagher, Karen; Spiga, Pablo An Erdős–Ko–Rado theorem for the derangement graph of PGL(2, q) acting on the projective line, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 532-544 | DOI | MR | Zbl

[35] Meagher, Karen; Spiga, Pablo; Tiep, Pham Huu An Erdős–Ko–Rado theorem for finite 2-transitive groups, European J. Combin., Volume 55 (2016), pp. 100-118 | DOI | MR | Zbl

[36] Metsch, K. An improved bound on the existence of Cameron–Liebler line classes, J. Combin. Theory Ser. A, Volume 121 (2014), pp. 89-93 | DOI | MR | Zbl

[37] Mogilnykh, Ivan Completely regular codes in Johnson and Grassmann graphs with small covering radii, Electron. J. Combin., Volume 29 (2022) no. 2, Paper no. 2.57, 15 pages | DOI | MR | Zbl

[38] Palmarin, Daniel Michael Cameron–Liebler Sets for 2-Transitive Groups, Masters thesis, University of Regina (2020)

[39] Piatetski-Shapiro, Ilya Complex representations of GL (2,K) for finite fields K, Contemporary Mathematics, 16, American Mathematical Society, Providence, RI, 1983, vii+71 pages

[40] Sagan, Bruce E. The symmetric group: Representations, combinatorial algorithms, and symmetric functions, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991, xviii+197 pages | MR

[41] Spiga, Pablo The Erdős–Ko–Rado theorem for the derangement graph of the projective general linear group acting on the projective space, J. Combin. Theory Ser. A, Volume 166 (2019), pp. 59-90 | DOI | MR | Zbl

[42] Wang, Jun; Zhang, Sophia J. An Erdős–Ko–Rado-type theorem in Coxeter groups, European J. Combin., Volume 29 (2008) no. 5, pp. 1112-1115 | DOI | MR | Zbl

Cited by Sources: