The Frobenius transform of a symmetric function
Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 931-958.

We define an abelian group homomorphism , which we call the Frobenius transform, from the ring of symmetric functions to the ring of the symmetric power series. The matrix entries of  in the Schur basis are the restriction coefficients r λ μ =dimHom 𝔖 n (V μ ,𝕊 λ n ), which are known to be nonnegative integers but have no known combinatorial interpretation. The Frobenius transform satisfies the identity {fg}={f}*{g}, where * is the Kronecker product.

We prove for all symmetric functions f that {f}= Sur f·(1+h 1 +h 2 +), where Sur f is a symmetric function with the same degree and leading term as f. Then, we compute the matrix entries of Sur in the complete homogeneous, elementary, and power sum bases and of Sur -1 in the complete homogeneous and elementary bases, giving combinatorial interpretations of the coefficients where possible. In particular, the matrix entries of Sur -1 in the elementary basis count words with a constraint on their Lyndon factorization.

As an example application of our main results, we prove that r λ μ =0 if |λμ ^|<2|μ ^|-|λ|, where μ ^ is the partition formed by removing the first part of μ. We also prove that r λ μ =0 if the Young diagram of μ contains a square of side length greater than 2 λ 1 -1 , and this inequality is tight.

Received:
Accepted:
Published online:
DOI: 10.5802/alco.365
Classification: 05E05
Keywords: symmetric functions, representation theory of categories, plethysm, Kronecker product

Lee, Mitchell 1

1 Harvard University Dept. of mathematics 1 Oxford st. Cambridge MA 02138 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_4_931_0,
     author = {Lee, Mitchell},
     title = {The {Frobenius} transform of a symmetric function},
     journal = {Algebraic Combinatorics},
     pages = {931--958},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {4},
     year = {2024},
     doi = {10.5802/alco.365},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.365/}
}
TY  - JOUR
AU  - Lee, Mitchell
TI  - The Frobenius transform of a symmetric function
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 931
EP  - 958
VL  - 7
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.365/
DO  - 10.5802/alco.365
LA  - en
ID  - ALCO_2024__7_4_931_0
ER  - 
%0 Journal Article
%A Lee, Mitchell
%T The Frobenius transform of a symmetric function
%J Algebraic Combinatorics
%D 2024
%P 931-958
%V 7
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.365/
%R 10.5802/alco.365
%G en
%F ALCO_2024__7_4_931_0
Lee, Mitchell. The Frobenius transform of a symmetric function. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 931-958. doi : 10.5802/alco.365. https://alco.centre-mersenne.org/articles/10.5802/alco.365/

[1] Andrews, George E.; Eriksson, Kimmo Integer partitions, Cambridge University Press, Cambridge, 2004, x+141 pages | DOI | MR

[2] Assaf, Sami H.; Speyer, David E. Specht modules decompose as alternating sums of restrictions of Schur modules, Proc. Amer. Math. Soc., Volume 148 (2020) no. 3, pp. 1015-1029 | DOI | MR | Zbl

[3] Cadogan, C. C. The Möbius function and connected graphs, J. Combinatorial Theory Ser. B, Volume 11 (1971), pp. 193-200 | DOI | MR | Zbl

[4] Chen, K.-T.; Fox, R. H.; Lyndon, R. C. Free differential calculus. IV. The quotient groups of the lower central series, Ann. of Math. (2), Volume 68 (1958), pp. 81-95 | DOI | MR | Zbl

[5] Fulton, William Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR

[6] Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren Concrete mathematics: a foundation for computer science, Addison-Wesley Publishing Company, Reading, MA, 1994, xiv+657 pages | MR

[7] Joyal, André Foncteurs analytiques et espèces de structures, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985) (Lecture Notes in Math.), Volume 1234, Springer, Berlin, 1986, pp. 126-159 | DOI | MR | Zbl

[8] Littlewood, D. E. Group Characters and the Structure of Groups, Proc. London Math. Soc. (2), Volume 39 (1935) no. 2, pp. 150-199 | DOI | MR | Zbl

[9] Loehr, Nicholas A.; Remmel, Jeffrey B. A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl

[10] Lothaire, M. Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997, xviii+238 pages | DOI | MR

[11] Lyndon, R. C. On Burnside’s problem. II, Trans. Amer. Math. Soc., Volume 78 (1955), pp. 329-332 | DOI | MR | Zbl

[12] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR

[13] Méndez, M. Tensor species and symmetric functions, Proc. Nat. Acad. Sci. U.S.A., Volume 88 (1991) no. 21, pp. 9892-9894 | DOI | MR | Zbl

[14] Narayanan, Sridhar P.; Paul, Digjoy; Prasad, Amritanshu; Srivastava, Shraddha Character polynomials and the restriction problem, Algebr. Comb., Volume 4 (2021) no. 4, pp. 703-722 | DOI | Numdam | MR | Zbl

[15] Narayanan, Sridhar P.; Paul, Digjoy; Prasad, Amritanshu; Srivastava, Shraddha Polynomial induction and the restriction problem, Indian J. Pure Appl. Math., Volume 52 (2021) no. 3, pp. 643-651 | DOI | MR | Zbl

[16] Orellana, Rosa; Zabrocki, Mike A combinatorial model for the decomposition of multivariate polynomial rings as S n -modules, Electron. J. Combin., Volume 27 (2020) no. 3, Paper no. 3.24, 18 pages | DOI | MR | Zbl

[17] Orellana, Rosa; Zabrocki, Mike The Hopf structure of symmetric group characters as symmetric functions, Algebr. Comb., Volume 4 (2021) no. 3, pp. 551-574 | DOI | Numdam | MR | Zbl

[18] Orellana, Rosa; Zabrocki, Mike Symmetric group characters as symmetric functions, Adv. Math., Volume 390 (2021), Paper no. 107943, 34 pages | DOI | MR | Zbl

[19] Reutenauer, Christophe Free Lie algebras, Handbook of algebra, Vol. 3 (Handb. Algebr.), Volume 3, Elsevier/North-Holland, Amsterdam, 2003, pp. 887-903 | DOI | MR | Zbl

[20] Ryba, Christopher Resolving irreducible S n -modules by modules restricted from GL n (), Represent. Theory, Volume 24 (2020), pp. 229-234 | DOI | MR | Zbl

[21] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR

[22] Wiltshire-Gordon, John D. Representation Theory of Combinatorial Categories, Ph. D. Thesis, University of Michigan (2016) (113 pages)

[23] Zabrocki, Mike Vertex operators for standard bases of the symmetric functions, J. Algebraic Combin., Volume 13 (2001) no. 1, pp. 83-101 | DOI | MR | Zbl

Cited by Sources: