A base for a permutation group acting on a set is a subset of such that the pointwise stabiliser is trivial. Let and be positive integers with . The symmetric and alternating groups and admit natural primitive actions on the set of -element subsets of . Building on work of Halasi [8], we provide explicit expressions for the base sizes of all of these actions, and hence determine the base size of all primitive actions of and .
Revised:
Accepted:
Published online:
Keywords: Symmetric group, base size, hypergraph
del Valle, Coen 1; Roney-Dougal, Colva M. 1
@article{ALCO_2024__7_4_959_0, author = {del Valle, Coen and Roney-Dougal, Colva M.}, title = {The base size of the symmetric group acting on subsets}, journal = {Algebraic Combinatorics}, pages = {959--967}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.370}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.370/} }
TY - JOUR AU - del Valle, Coen AU - Roney-Dougal, Colva M. TI - The base size of the symmetric group acting on subsets JO - Algebraic Combinatorics PY - 2024 SP - 959 EP - 967 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.370/ DO - 10.5802/alco.370 LA - en ID - ALCO_2024__7_4_959_0 ER -
%0 Journal Article %A del Valle, Coen %A Roney-Dougal, Colva M. %T The base size of the symmetric group acting on subsets %J Algebraic Combinatorics %D 2024 %P 959-967 %V 7 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.370/ %R 10.5802/alco.370 %G en %F ALCO_2024__7_4_959_0
del Valle, Coen; Roney-Dougal, Colva M. The base size of the symmetric group acting on subsets. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 959-967. doi : 10.5802/alco.370. https://alco.centre-mersenne.org/articles/10.5802/alco.370/
[1] New results on degree sequences of uniform hypergraphs, Electron. J. Combin., Volume 20 (2013) no. 4, Paper no. 14, 18 pages | DOI | MR | Zbl
[2] Minimum bases for permutation groups: the greedy approximation, J. Algorithms, Volume 13 (1992) no. 2, pp. 297-306 | DOI | MR | Zbl
[3] Identifying graph automorphisms using determining sets, Electron. J. Combin., Volume 13 (2006) no. 1, Paper no. 78, 12 pages | DOI | MR | Zbl
[4] On base sizes for symmetric groups, Bull. Lond. Math. Soc., Volume 43 (2011) no. 2, pp. 386-391 | DOI | MR | Zbl
[5] Base sizes for simple groups and a conjecture of Cameron, Proc. Lond. Math. Soc. (3), Volume 98 (2009) no. 1, pp. 116-162 | DOI | MR | Zbl
[6] The determining number of Kneser graphs, Discrete Math. Theor. Comput. Sci., Volume 15 (2013) no. 1, pp. 1-14 | DOI | MR | Zbl
[7] Random permutations: some group-theoretic aspects, Combin. Probab. Comput., Volume 2 (1993) no. 3, pp. 257-262 | DOI | MR | Zbl
[8] On the base size for the symmetric group acting on subsets, Studia Sci. Math. Hungar., Volume 49 (2012) no. 4, pp. 492-500 | DOI | MR | Zbl
[9] Simple groups, permutation groups, and probability, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 497-520 | DOI | MR | Zbl
[10] A formula for the base size of the symmetric group in its action on subsets, Australas. J. Combin., Volume 88 (2024) no. 2, pp. 244-255 | Zbl
[11] On the base size of the symmetric and the alternating group acting on partitions, J. Algebra, Volume 587 (2021), pp. 569-593 | DOI | MR | Zbl
[12] Permutation group algorithms, Cambridge Tracts in Mathematics, 152, Cambridge University Press, Cambridge, 2003, x+264 pages | DOI | MR
Cited by Sources: