We investigate the growth of the -part of the Jacobians in voltage covers of finite connected graphs, where the voltage group is isomorphic to for some , and we study analogues of a conjecture of Greenberg on the growth of class numbers in multiple -extensions of number fields. Moreover we prove an Iwasawa main conjecture in this setting, and we study the variation of (generalised) Iwasawa invariants as one runs over the -covers of a fixed finite graph . We discuss many examples; in particular, we construct examples with non-trivial Iwasawa invariants.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.366
Keywords: Voltage cover of a graph, Greenberg’s conjecture, Iwasawa main conjecture, (generalised) Iwasawa invariants
Kleine, Sören 1; Müller, Katharina 2
CC-BY 4.0
@article{ALCO_2024__7_4_1011_0,
author = {Kleine, S\"oren and M\"uller, Katharina},
title = {On the growth of the {Jacobians} in $\mathbb{Z}_p^l$-voltage covers of graphs},
journal = {Algebraic Combinatorics},
pages = {1011--1038},
year = {2024},
publisher = {The Combinatorics Consortium},
volume = {7},
number = {4},
doi = {10.5802/alco.366},
zbl = {07921884},
mrnumber = {4804582},
language = {en},
url = {https://alco.centre-mersenne.org/articles/10.5802/alco.366/}
}
TY - JOUR
AU - Kleine, Sören
AU - Müller, Katharina
TI - On the growth of the Jacobians in $\mathbb{Z}_p^l$-voltage covers of graphs
JO - Algebraic Combinatorics
PY - 2024
SP - 1011
EP - 1038
VL - 7
IS - 4
PB - The Combinatorics Consortium
UR - https://alco.centre-mersenne.org/articles/10.5802/alco.366/
DO - 10.5802/alco.366
LA - en
ID - ALCO_2024__7_4_1011_0
ER -
%0 Journal Article
%A Kleine, Sören
%A Müller, Katharina
%T On the growth of the Jacobians in $\mathbb{Z}_p^l$-voltage covers of graphs
%J Algebraic Combinatorics
%D 2024
%P 1011-1038
%V 7
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.366/
%R 10.5802/alco.366
%G en
%F ALCO_2024__7_4_1011_0
Kleine, Sören; Müller, Katharina. On the growth of the Jacobians in $\mathbb{Z}_p^l$-voltage covers of graphs. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1011-1038. doi: 10.5802/alco.366
[1] On some questions in the theory of -extensions of algebraic number fields. II., Math. USSR, Izv., Volume 16 (1976), pp. 675-685 | DOI | Zbl
[2] Divisors and sandpiles: an introduction to chip-firing, American Mathematical Society, Providence, RI, 2018, xiv+325 pages | DOI | MR
[3] Class numbers in -extensions, Math. Ann., Volume 255 (1981) no. 2, pp. 235-258 | DOI | MR | Zbl
[4] On -towers of graphs, Algebr. Comb., Volume 6 (2023) no. 5, pp. 1331-1346 | DOI | MR | Zbl
[5] Remarks on -extensions of number fields, Proc. Japan Acad. Ser. A Math. Sci., Volume 70 (1994) no. 8, pp. 264-266 http://projecteuclid.org/euclid.pja/1195510924 | MR | Zbl
[6] Jacobians of Finite and Infinite Voltage Covers of Graphs, Ph. D. Thesis, The University of Vermont and State Agricultural College (2021) (266 pages)
[7] Iwasawa theory of Jacobians of graphs, Algebr. Comb., Volume 5 (2022) no. 5, pp. 827-848 | DOI | Numdam | Zbl | MR
[8] The Iwasawa invariants of -extensions of a fixed number field., Am. J. Math., Volume 95 (1973), pp. 204-214 | DOI | Zbl | MR
[9] On -extensions of algebraic number fields, Bull. Amer. Math. Soc., Volume 65 (1959), pp. 183-226 | DOI | Zbl | MR
[10] On the -invariants of -extensions, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 1-11 | MR | Zbl
[11] Local behavior of Iwasawa’s invariants., Int. J. Number Theory, Volume 13 (2017) no. 4, pp. 1013-1036 | DOI | Zbl | MR
[12] Generalised Iwasawa invariants and the growth of class numbers, Forum Math., Volume 33 (2021) no. 1, pp. 109-127 | DOI | MR | Zbl
[13] Boundedness of Iwasawa invariants of fine Selmer groups and Selmer groups, Results Math., Volume 78 (2023) no. 4, Paper no. 148, 42 pages | DOI | MR | Zbl
[14] The non--part of the number of spanning trees in abelian -towers of multigraphs, Res. Number Theory, Volume 9 (2023) no. 1, Paper no. 18, 16 pages | DOI | MR | Zbl
[15] On abelian -towers of multigraphs II, Ann. Math. Qué., Volume 47 (2023) no. 2, pp. 461-473 | DOI | MR | Zbl
[16] On abelian -towers of multigraphs III, Ann. Math. Qué., Volume 48 (2024) no. 1, pp. 1-19 | DOI | MR
[17] On -adic power series, Math. Ann., Volume 255 (1981) no. 2, pp. 217-227 | DOI | Zbl | MR
[18] Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323, Springer-Verlag, Berlin, 2008, xvi+825 pages | DOI | MR
[19] Schur complements and statistics, Linear Algebra Appl., Volume 36 (1981), pp. 187-295 | DOI | Zbl | MR
[20] On abelian -towers of multigraphs, Ann. Math. Qué., Volume 45 (2021) no. 2, pp. 433-452 | DOI | Zbl | MR
[21] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997, xiv+487 pages | DOI | MR
[22] Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices, Adv. Difference Equ. (2019), Paper no. 410, 11 pages | DOI | Zbl | MR
Cited by Sources: