For a smooth projective toric variety of Picard rank two we classify all exceptional sequences of invertible sheaves which have maximal length. In particular, we prove that unlike non-maximal sequences, they (a) remain exceptional under lexicographical reordering, (b) satisfy strong spatial constraints in the Picard lattice, and (c) are full, that is, they generate the derived category of the variety.
Accepted:
Revised after acceptance:
Published online:
Keywords: toric variety, derived category, exceptional sequence
Altmann, Klaus 1; Witt, Frederik 2
@article{ALCO_2024__7_4_1039_0, author = {Altmann, Klaus and Witt, Frederik}, title = {The structure of exceptional sequences on toric varieties of {Picard} rank two}, journal = {Algebraic Combinatorics}, pages = {1039--1074}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.371}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.371/} }
TY - JOUR AU - Altmann, Klaus AU - Witt, Frederik TI - The structure of exceptional sequences on toric varieties of Picard rank two JO - Algebraic Combinatorics PY - 2024 SP - 1039 EP - 1074 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.371/ DO - 10.5802/alco.371 LA - en ID - ALCO_2024__7_4_1039_0 ER -
%0 Journal Article %A Altmann, Klaus %A Witt, Frederik %T The structure of exceptional sequences on toric varieties of Picard rank two %J Algebraic Combinatorics %D 2024 %P 1039-1074 %V 7 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.371/ %R 10.5802/alco.371 %G en %F ALCO_2024__7_4_1039_0
Altmann, Klaus; Witt, Frederik. The structure of exceptional sequences on toric varieties of Picard rank two. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1039-1074. doi : 10.5802/alco.371. https://alco.centre-mersenne.org/articles/10.5802/alco.371/
[1] Exceptional sequences of 8 line bundles on , J. Algebraic Combin., Volume 56 (2022) no. 2, pp. 305-322 | DOI | MR | Zbl
[2] Immaculate line bundles on toric varieties, Pure Appl. Math. Q., Volume 16 (2020) no. 4, pp. 1147-1217 | DOI | MR | Zbl
[3] Extensions of toric line bundles, Math. Z., Volume 304 (2023) no. 1, Paper no. 3, 26 pages | DOI | MR | Zbl
[4] Exceptional sequences of line bundles on projective bundles, 2023 | arXiv
[5] Displaying the cohomology of toric line bundles, Izv. Ross. Akad. Nauk Ser. Mat., Volume 84 (2020) no. 4, pp. 66-78 | DOI | MR
[6] Coherent sheaves on and problems in linear algebra, Funktsional. Anal. i Prilozhen., Volume 12 (1978) no. 3, pp. 68-69 | MR
[7] Determinantal Barlow surfaces and phantom categories, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 7, pp. 1569-1592 | DOI | MR | Zbl
[8] On strong exceptional collections of line bundles of maximal length on Fano toric Deligne-Mumford stacks, Asian J. Math., Volume 25 (2021) no. 4, pp. 505-520 | DOI | MR | Zbl
[9] Tilting sheaves on toric varieties, Math. Z., Volume 248 (2004) no. 4, pp. 849-865 | DOI | MR | Zbl
[10] Maximal lengths of exceptional collections of line bundles, J. Lond. Math. Soc. (2), Volume 90 (2014) no. 2, pp. 350-372 | DOI | MR | Zbl
[11] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, xii+157 pages (The William H. Roever Lectures in Geometry) | DOI | MR
[12] Derived categories of Keum’s fake projective planes, Adv. Math., Volume 278 (2015), pp. 238-253 | DOI | MR | Zbl
[13] Full exceptional collections of vector bundles on rank-two linear GIT quotients, 2022 | arXiv
[14] Derived categories of toric varieties, Michigan Math. J., Volume 54 (2006) no. 3, pp. 517-535 | DOI | MR | Zbl
[15] Derived categories of toric varieties II, Michigan Math. J., Volume 62 (2013) no. 2, pp. 353-363 | DOI | MR | Zbl
[16] Derived categories of toric varieties III, Eur. J. Math., Volume 2 (2016) no. 1, pp. 196-207 | DOI | MR | Zbl
[17] A classification of toric varieties with few generators, Aequationes Math., Volume 35 (1988) no. 2-3, pp. 254-266 | DOI | MR | Zbl
[18] A phantom on a rational surface, Invent. Math., Volume 235 (2024) no. 3, pp. 1009-1018 | DOI | MR | Zbl
[19] Semiorthogonal decompositions in algebraic geometry, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul (2014), pp. 635-660 | MR | Zbl
[20] On residual categories for Grassmannians, Proc. Lond. Math. Soc. (3), Volume 120 (2020) no. 5, pp. 617-641 | DOI | MR | Zbl
[21] Residual categories for (co)adjoint Grassmannians in classical types, Compos. Math., Volume 157 (2021) no. 6, pp. 1172-1206 | DOI | MR | Zbl
[22] Classification of full exceptional collections on smooth toric Fano varieties with Picard rank two, Adv. Geom., Volume 23 (2023) no. 1, pp. 25-49 | DOI | MR | Zbl
[23] Classification of full exceptional collections of line bundles on three blow-ups of , J. Korean Math. Soc., Volume 56 (2019) no. 2, pp. 387-419 | DOI | MR | Zbl
[24] Lefschetz exceptional collections in -equivariant categories of , Eur. J. Math., Volume 7 (2021) no. 3, pp. 1182-1208 | DOI | MR | Zbl
[25] Helices and vector bundles (Rudakov, A. N., ed.), London Mathematical Society Lecture Note Series, 148, Cambridge University Press, Cambridge, 1990, iv+143 pages (Seminaire Rudakov, Translated from the Russian by A. D. King, P. Kobak and A. Maciocia) | DOI | MR
[26] Higher algebraic -theory for actions of diagonalizable groups, Invent. Math., Volume 153 (2003) no. 1, pp. 1-44 | DOI | MR | Zbl
Cited by Sources: