The structure of exceptional sequences on toric varieties of Picard rank two
Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1039-1074.

For a smooth projective toric variety of Picard rank two we classify all exceptional sequences of invertible sheaves which have maximal length. In particular, we prove that unlike non-maximal sequences, they (a) remain exceptional under lexicographical reordering, (b) satisfy strong spatial constraints in the Picard lattice, and (c) are full, that is, they generate the derived category of the variety.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/alco.371
Classification: 14F08, 14M25, 52C05
Keywords: toric variety, derived category, exceptional sequence

Altmann, Klaus 1; Witt, Frederik 2

1 Institut für Mathematik, FU Berlin, Königin-Luise-Str. 24-26, D-14195 Berlin
2 Fachbereich Mathematik, U Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_4_1039_0,
     author = {Altmann, Klaus and Witt, Frederik},
     title = {The structure of exceptional sequences on toric varieties of {Picard} rank two},
     journal = {Algebraic Combinatorics},
     pages = {1039--1074},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {4},
     year = {2024},
     doi = {10.5802/alco.371},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.371/}
}
TY  - JOUR
AU  - Altmann, Klaus
AU  - Witt, Frederik
TI  - The structure of exceptional sequences on toric varieties of Picard rank two
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1039
EP  - 1074
VL  - 7
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.371/
DO  - 10.5802/alco.371
LA  - en
ID  - ALCO_2024__7_4_1039_0
ER  - 
%0 Journal Article
%A Altmann, Klaus
%A Witt, Frederik
%T The structure of exceptional sequences on toric varieties of Picard rank two
%J Algebraic Combinatorics
%D 2024
%P 1039-1074
%V 7
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.371/
%R 10.5802/alco.371
%G en
%F ALCO_2024__7_4_1039_0
Altmann, Klaus; Witt, Frederik. The structure of exceptional sequences on toric varieties of Picard rank two. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1039-1074. doi : 10.5802/alco.371. https://alco.centre-mersenne.org/articles/10.5802/alco.371/

[1] Altmann, Klaus; Altmann, Martin Exceptional sequences of 8 line bundles on ( 1 ) 3 , J. Algebraic Combin., Volume 56 (2022) no. 2, pp. 305-322 | DOI | MR | Zbl

[2] Altmann, Klaus; Buczyński, Jarosław; Kastner, Lars; Winz, Anna-Lena Immaculate line bundles on toric varieties, Pure Appl. Math. Q., Volume 16 (2020) no. 4, pp. 1147-1217 | DOI | MR | Zbl

[3] Altmann, Klaus; Flatt, Amelie; Hille, Lutz Extensions of toric line bundles, Math. Z., Volume 304 (2023) no. 1, Paper no. 3, 26 pages | DOI | MR | Zbl

[4] Altmann, Klaus; Hochenegger, Andreas; Witt, Frederik Exceptional sequences of line bundles on projective bundles, 2023 | arXiv

[5] Altmann, Klaus; Ploog, David Displaying the cohomology of toric line bundles, Izv. Ross. Akad. Nauk Ser. Mat., Volume 84 (2020) no. 4, pp. 66-78 | DOI | MR

[6] Beĭlinson, A. A. Coherent sheaves on P n and problems in linear algebra, Funktsional. Anal. i Prilozhen., Volume 12 (1978) no. 3, pp. 68-69 | MR

[7] Böhning, Christian; Graf von Bothmer, Hans-Christian; Katzarkov, Ludmil; Sosna, Pawel Determinantal Barlow surfaces and phantom categories, J. Eur. Math. Soc. (JEMS), Volume 17 (2015) no. 7, pp. 1569-1592 | DOI | MR | Zbl

[8] Borisov, Lev; Wang, Chengxi On strong exceptional collections of line bundles of maximal length on Fano toric Deligne-Mumford stacks, Asian J. Math., Volume 25 (2021) no. 4, pp. 505-520 | DOI | MR | Zbl

[9] Costa, L.; Miró-Roig, R. M. Tilting sheaves on toric varieties, Math. Z., Volume 248 (2004) no. 4, pp. 849-865 | DOI | MR | Zbl

[10] Efimov, Alexander I. Maximal lengths of exceptional collections of line bundles, J. Lond. Math. Soc. (2), Volume 90 (2014) no. 2, pp. 350-372 | DOI | MR | Zbl

[11] Fulton, William Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, xii+157 pages (The William H. Roever Lectures in Geometry) | DOI | MR

[12] Galkin, Sergey; Katzarkov, Ludmil; Mellit, Anton; Shinder, Evgeny Derived categories of Keum’s fake projective planes, Adv. Math., Volume 278 (2015), pp. 238-253 | DOI | MR | Zbl

[13] Halpern-Leistner, Daniel; Kemboi, Kimoi Full exceptional collections of vector bundles on rank-two linear GIT quotients, 2022 | arXiv

[14] Kawamata, Yujiro Derived categories of toric varieties, Michigan Math. J., Volume 54 (2006) no. 3, pp. 517-535 | DOI | MR | Zbl

[15] Kawamata, Yujiro Derived categories of toric varieties II, Michigan Math. J., Volume 62 (2013) no. 2, pp. 353-363 | DOI | MR | Zbl

[16] Kawamata, Yujiro Derived categories of toric varieties III, Eur. J. Math., Volume 2 (2016) no. 1, pp. 196-207 | DOI | MR | Zbl

[17] Kleinschmidt, Peter A classification of toric varieties with few generators, Aequationes Math., Volume 35 (1988) no. 2-3, pp. 254-266 | DOI | MR | Zbl

[18] Krah, Johannes A phantom on a rational surface, Invent. Math., Volume 235 (2024) no. 3, pp. 1009-1018 | DOI | MR | Zbl

[19] Kuznetsov, Alexander Semiorthogonal decompositions in algebraic geometry, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul (2014), pp. 635-660 | MR | Zbl

[20] Kuznetsov, Alexander; Smirnov, Maxim On residual categories for Grassmannians, Proc. Lond. Math. Soc. (3), Volume 120 (2020) no. 5, pp. 617-641 | DOI | MR | Zbl

[21] Kuznetsov, Alexander; Smirnov, Maxim Residual categories for (co)adjoint Grassmannians in classical types, Compos. Math., Volume 157 (2021) no. 6, pp. 1172-1206 | DOI | MR | Zbl

[22] Lee, Dae-Won Classification of full exceptional collections on smooth toric Fano varieties with Picard rank two, Adv. Geom., Volume 23 (2023) no. 1, pp. 25-49 | DOI | MR | Zbl

[23] Liu, Wanmin; Yang, Song; Yu, Xun Classification of full exceptional collections of line bundles on three blow-ups of 3 , J. Korean Math. Soc., Volume 56 (2019) no. 2, pp. 387-419 | DOI | MR | Zbl

[24] Mironov, Mikhail Lefschetz exceptional collections in S k -equivariant categories of ( n ) k , Eur. J. Math., Volume 7 (2021) no. 3, pp. 1182-1208 | DOI | MR | Zbl

[25] Helices and vector bundles (Rudakov, A. N., ed.), London Mathematical Society Lecture Note Series, 148, Cambridge University Press, Cambridge, 1990, iv+143 pages (Seminaire Rudakov, Translated from the Russian by A. D. King, P. Kobak and A. Maciocia) | DOI | MR

[26] Vezzosi, Gabriele; Vistoli, Angelo Higher algebraic K-theory for actions of diagonalizable groups, Invent. Math., Volume 153 (2003) no. 1, pp. 1-44 | DOI | MR | Zbl

Cited by Sources: