Ehrhart theory on periodic graphs
Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 969-1010.

The purpose of this paper is to extend the scope of Ehrhart theory to periodic graphs. We give sufficient conditions for the growth sequences of periodic graphs to be a quasi-polynomial and to satisfy the reciprocity laws. Furthermore, we apply our theory to determine the growth series in several new examples.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.367
Classification: 05A15, 52B20, 05C30, 92E10
Keywords: Ehrhart theory, periodic graphs, tiling problems, generating functions, coordination sequences, growth sequences

Inoue, Takuya 1; Nakamura, Yusuke 2

1 Graduate School of Mathematical Sciences the University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan
2 Graduate School of Mathematics Nagoya University Furo-cho Chikusa-ku Nagoya 464-8602 Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_4_969_0,
     author = {Inoue, Takuya and Nakamura, Yusuke},
     title = {Ehrhart theory on periodic graphs},
     journal = {Algebraic Combinatorics},
     pages = {969--1010},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {4},
     year = {2024},
     doi = {10.5802/alco.367},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.367/}
}
TY  - JOUR
AU  - Inoue, Takuya
AU  - Nakamura, Yusuke
TI  - Ehrhart theory on periodic graphs
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 969
EP  - 1010
VL  - 7
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.367/
DO  - 10.5802/alco.367
LA  - en
ID  - ALCO_2024__7_4_969_0
ER  - 
%0 Journal Article
%A Inoue, Takuya
%A Nakamura, Yusuke
%T Ehrhart theory on periodic graphs
%J Algebraic Combinatorics
%D 2024
%P 969-1010
%V 7
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.367/
%R 10.5802/alco.367
%G en
%F ALCO_2024__7_4_969_0
Inoue, Takuya; Nakamura, Yusuke. Ehrhart theory on periodic graphs. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 969-1010. doi : 10.5802/alco.367. https://alco.centre-mersenne.org/articles/10.5802/alco.367/

[1] Akiyama, Shigeki; Caalim, Jonathan; Imai, Katsunobu; Kaneko, Hajime Corona limits of tilings: periodic case, Discrete Comput. Geom., Volume 61 (2019) no. 3, pp. 626-652 | DOI | MR | Zbl

[2] Ardila, Federico; Beck, Matthias; Hoşten, Serkan; Pfeifle, Julian; Seashore, Kim Root polytopes and growth series of root lattices, SIAM J. Discrete Math., Volume 25 (2011) no. 1, pp. 360-378 | DOI | MR | Zbl

[3] Bacher, R.; de la Harpe, P.; Venkov, B. Séries de croissance et polynômes d’Ehrhart associés aux réseaux de racines, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 3, pp. 727-762 Symposium à la Mémoire de François Jaeger (Grenoble, 1998) | DOI | Numdam | MR | Zbl

[4] Baerlocher, Christian; McCusker, Lynne B. Database of Zeolite Structures http://www.iza-structure.org/databases/

[5] Beck, Matthias; Robins, Sinai Computing the continuous discretely: integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | MR

[6] Bruns, Winfried; Gubeladze, Joseph Polytopes, rings, and K-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009, xiv+461 pages | DOI | MR

[7] Conway, J. H.; Sloane, N. J. A. Low-dimensional lattices. VII. Coordination sequences, Proc. Roy. Soc. London Ser. A, Volume 453 (1997) no. 1966, pp. 2369-2389 | DOI | MR | Zbl

[8] Cox, David A.; Little, John B.; Schenck, Henry K. Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011, xxiv+841 pages | DOI | MR

[9] de Vries, Christopher; Yoshinaga, Masahiko Ehrhart quasi-polynomials of almost integral polytopes (2021) (forthcoming, Discrete Comput. Geom.) | arXiv

[10] Eon, Jean Guillaume Topological density of nets: a direct calculation, Acta Crystallogr. A, Volume 60 (2004) no. 1, pp. 7-18 | DOI | Zbl

[11] Fritz, Tobias Velocity polytopes of periodic graphs and a no-go theorem for digital physics, Discrete Math., Volume 313 (2013) no. 12, pp. 1289-1301 | DOI | MR

[12] Goodman-Strauss, C.; Sloane, N. J. A. A coloring-book approach to finding coordination sequences, Acta Crystallogr. Sect. A, Volume 75 (2019) no. 1, pp. 121-134 | DOI | MR | Zbl

[13] Grosse-Kunstleve, R. W.; Brunner, G. O.; Sloane, N. J. A. Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Crystallogr. A, Volume 52 (1996) no. 6, pp. 879-889 | DOI

[14] Hoffmann, Roald; Kabanov, Artyom A; Golov, Andrey A; Proserpio, Davide M Homo citans and carbon allotropes: for an ethics of citation, Angew. Chem. Int. Edit., Volume 55 (2016) no. 37, pp. 10962-10976 | DOI

[15] Kotani, Motoko; Sunada, Toshikazu Geometric aspects of large deviations for random walks on a crystal lattice, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, pp. 215-223 | DOI | MR | Zbl

[16] Kotani, Motoko; Sunada, Toshikazu Large deviation and the tangent cone at infinity of a crystal lattice, Math. Z., Volume 254 (2006) no. 4, pp. 837-870 | DOI | MR | Zbl

[17] McMullen, P. Lattice invariant valuations on rational polytopes, Arch. Math. (Basel), Volume 31 (1978/79) no. 5, pp. 509-516 | DOI | MR | Zbl

[18] Momma, Koichi; Izumi, Fujio VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., Volume 44 (2011) no. 6, pp. 1272-1276 | DOI

[19] Nakamura, Yusuke; Sakamoto, Ryotaro; Mase, Takafumi; Nakagawa, Junichi Coordination sequences of crystals are of quasi-polynomial type, Acta Crystallogr. A, Volume 77 (2021) no. 2, pp. 138-148 | DOI | Zbl

[20] Shutov, Anton; Maleev, Andrey Layer-by-Layer Growth Model for Partitions, Packings, and Graphs, Tranzit-X, Vladimir (2011) (in Russian)

[21] Shutov, Anton; Maleev, Andrey Coordination sequences and layer-by-layer growth of periodic structures, Z. Krist.-Cryst. Mater., Volume 234 (2019) no. 5, pp. 291-299 | DOI | Zbl

[22] Shutov, Anton; Maleev, Andrey Coordination sequences of 2-uniform graphs, Z. Krist.-Cryst. Mater., Volume 235 (2020) no. 4-5, pp. 157-166 | DOI

[23] Shutov, Anton; Maleev, Andrey Topological densities of periodic graphs, Z. Krist.-Cryst. Mater., Volume 235 (2020) no. 12, pp. 609-617 | DOI

[24] Stanley, Richard P. Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR

[25] Sunada, Toshikazu Topological crystallography: with a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013, xii+229 pages | DOI | MR

[26] Wakatsuki, Shun On the growth of crystal structure, Suurikagaku Jissenkenkyu Letter (2018), pp. LMSR 2018-21 (in Japanese)

[27] Zhuravlev, Shun Self-similar growth of periodic partitions and graphs, St. Petersb. Math. J., Volume 13 (2002) no. 2, pp. 201-220 (in Russian) | Zbl

Cited by Sources: