The purpose of this paper is to extend the scope of Ehrhart theory to periodic graphs. We give sufficient conditions for the growth sequences of periodic graphs to be a quasi-polynomial and to satisfy the reciprocity laws. Furthermore, we apply our theory to determine the growth series in several new examples.
Revised:
Accepted:
Published online:
Keywords: Ehrhart theory, periodic graphs, tiling problems, generating functions, coordination sequences, growth sequences
Inoue, Takuya 1; Nakamura, Yusuke 2
@article{ALCO_2024__7_4_969_0, author = {Inoue, Takuya and Nakamura, Yusuke}, title = {Ehrhart theory on periodic graphs}, journal = {Algebraic Combinatorics}, pages = {969--1010}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.367}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.367/} }
TY - JOUR AU - Inoue, Takuya AU - Nakamura, Yusuke TI - Ehrhart theory on periodic graphs JO - Algebraic Combinatorics PY - 2024 SP - 969 EP - 1010 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.367/ DO - 10.5802/alco.367 LA - en ID - ALCO_2024__7_4_969_0 ER -
Inoue, Takuya; Nakamura, Yusuke. Ehrhart theory on periodic graphs. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 969-1010. doi : 10.5802/alco.367. https://alco.centre-mersenne.org/articles/10.5802/alco.367/
[1] Corona limits of tilings: periodic case, Discrete Comput. Geom., Volume 61 (2019) no. 3, pp. 626-652 | DOI | MR | Zbl
[2] Root polytopes and growth series of root lattices, SIAM J. Discrete Math., Volume 25 (2011) no. 1, pp. 360-378 | DOI | MR | Zbl
[3] Séries de croissance et polynômes d’Ehrhart associés aux réseaux de racines, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 3, pp. 727-762 Symposium à la Mémoire de François Jaeger (Grenoble, 1998) | DOI | Numdam | MR | Zbl
[4] Database of Zeolite Structures http://www.iza-structure.org/databases/
[5] Computing the continuous discretely: integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | MR
[6] Polytopes, rings, and -theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009, xiv+461 pages | DOI | MR
[7] Low-dimensional lattices. VII. Coordination sequences, Proc. Roy. Soc. London Ser. A, Volume 453 (1997) no. 1966, pp. 2369-2389 | DOI | MR | Zbl
[8] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011, xxiv+841 pages | DOI | MR
[9] Ehrhart quasi-polynomials of almost integral polytopes (2021) (forthcoming, Discrete Comput. Geom.) | arXiv
[10] Topological density of nets: a direct calculation, Acta Crystallogr. A, Volume 60 (2004) no. 1, pp. 7-18 | DOI | Zbl
[11] Velocity polytopes of periodic graphs and a no-go theorem for digital physics, Discrete Math., Volume 313 (2013) no. 12, pp. 1289-1301 | DOI | MR
[12] A coloring-book approach to finding coordination sequences, Acta Crystallogr. Sect. A, Volume 75 (2019) no. 1, pp. 121-134 | DOI | MR | Zbl
[13] Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Crystallogr. A, Volume 52 (1996) no. 6, pp. 879-889 | DOI
[14] Homo citans and carbon allotropes: for an ethics of citation, Angew. Chem. Int. Edit., Volume 55 (2016) no. 37, pp. 10962-10976 | DOI
[15] Geometric aspects of large deviations for random walks on a crystal lattice, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, pp. 215-223 | DOI | MR | Zbl
[16] Large deviation and the tangent cone at infinity of a crystal lattice, Math. Z., Volume 254 (2006) no. 4, pp. 837-870 | DOI | MR | Zbl
[17] Lattice invariant valuations on rational polytopes, Arch. Math. (Basel), Volume 31 (1978/79) no. 5, pp. 509-516 | DOI | MR | Zbl
[18] VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., Volume 44 (2011) no. 6, pp. 1272-1276 | DOI
[19] Coordination sequences of crystals are of quasi-polynomial type, Acta Crystallogr. A, Volume 77 (2021) no. 2, pp. 138-148 | DOI | Zbl
[20] Layer-by-Layer Growth Model for Partitions, Packings, and Graphs, Tranzit-X, Vladimir (2011) (in Russian)
[21] Coordination sequences and layer-by-layer growth of periodic structures, Z. Krist.-Cryst. Mater., Volume 234 (2019) no. 5, pp. 291-299 | DOI | Zbl
[22] Coordination sequences of 2-uniform graphs, Z. Krist.-Cryst. Mater., Volume 235 (2020) no. 4-5, pp. 157-166 | DOI
[23] Topological densities of periodic graphs, Z. Krist.-Cryst. Mater., Volume 235 (2020) no. 12, pp. 609-617 | DOI
[24] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR
[25] Topological crystallography: with a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, Tokyo, 2013, xii+229 pages | DOI | MR
[26] On the growth of crystal structure, Suurikagaku Jissenkenkyu Letter (2018), pp. LMSR 2018-21 (in Japanese)
[27] Self-similar growth of periodic partitions and graphs, St. Petersb. Math. J., Volume 13 (2002) no. 2, pp. 201-220 (in Russian) | Zbl
Cited by Sources: