Hurwitz numbers count covers of curves satisfying fixed ramification data. Via monodromy representation, this counting problem can be transformed to a problem of counting factorizations in the symmetric group. This and other beautiful connections make Hurwitz numbers a longstanding active research topic. In recent work [4], a new enumerative invariant called -Hurwitz number was introduced, which enumerates non-orientable branched coverings. For , we obtain twisted Hurwitz numbers which were linked to surgery theory in [1] and admit a representation as factorisations in the symmetric group. In this paper, we derive a tropical interpretation of twisted Hurwitz numbers in terms of tropical covers and study their polynomial structure.
Revised:
Accepted:
Published online:
Keywords: Tropical geometry, Hurwitz numbers
Hahn, Marvin Anas 1; Markwig, Hannah 2
@article{ALCO_2024__7_4_1075_0, author = {Hahn, Marvin Anas and Markwig, Hannah}, title = {Twisted {Hurwitz} numbers: {Tropical} and polynomial structures}, journal = {Algebraic Combinatorics}, pages = {1075--1101}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.368}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.368/} }
TY - JOUR AU - Hahn, Marvin Anas AU - Markwig, Hannah TI - Twisted Hurwitz numbers: Tropical and polynomial structures JO - Algebraic Combinatorics PY - 2024 SP - 1075 EP - 1101 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.368/ DO - 10.5802/alco.368 LA - en ID - ALCO_2024__7_4_1075_0 ER -
%0 Journal Article %A Hahn, Marvin Anas %A Markwig, Hannah %T Twisted Hurwitz numbers: Tropical and polynomial structures %J Algebraic Combinatorics %D 2024 %P 1075-1101 %V 7 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.368/ %R 10.5802/alco.368 %G en %F ALCO_2024__7_4_1075_0
Hahn, Marvin Anas; Markwig, Hannah. Twisted Hurwitz numbers: Tropical and polynomial structures. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1075-1101. doi : 10.5802/alco.368. https://alco.centre-mersenne.org/articles/10.5802/alco.368/
[1] Ribbon decomposition and twisted Hurwitz numbers, Math. Res. Rep., Volume 5 (2024), pp. 1-19 | DOI | MR | Zbl
[2] Tropical Hurwitz numbers, J. Algebraic Combin., Volume 32 (2010) no. 2, pp. 241-265 | DOI | MR | Zbl
[3] Wall crossings for double Hurwitz numbers, Adv. Math., Volume 228 (2011) no. 4, pp. 1894-1937 | DOI | MR | Zbl
[4] Non-orientable branched coverings, -Hurwitz numbers, and positivity for multiparametric Jack expansions, Adv. Math., Volume 409 (2022), Paper no. 108645, 72 pages | DOI | MR | Zbl
[5] Pruned Hurwitz numbers, Trans. Amer. Math. Soc., Volume 370 (2018) no. 5, pp. 3053-3084 | DOI | MR | Zbl
[6] GAP — Groups, Algorithms, and Programming, Version 4.7.8 (2015) https://www.gap-system.org
[7] Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 71-89 | DOI | Numdam | MR | Zbl
[8] Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions, Trans. Amer. Math. Soc., Volume 348 (1996) no. 3, pp. 873-892 | DOI | MR | Zbl
[9] Towards the geometry of double Hurwitz numbers, Adv. Math., Volume 198 (2005) no. 1, pp. 43-92 | DOI | MR | Zbl
[10] Pruned double Hurwitz numbers, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. 3.66, 32 pages | DOI | MR | Zbl
[11] Bi-pruned Hurwitz numbers, J. Combin. Theory Ser. A, Volume 174 (2020), Paper no. 105240, 30 pages | DOI | MR | Zbl
[12] Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d’enfant, monotone, and double simple Hurwitz numbers, Adv. Math., Volume 336 (2018), pp. 38-69 | DOI | MR | Zbl
[13] Wall-crossing and recursion formulae for tropical Jucys covers, Trans. Amer. Math. Soc., Volume 373 (2020) no. 7, pp. 4685-4711 | DOI | MR | Zbl
[14] Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann., Volume 41 (1892) no. 3, pp. 403-442 | DOI | MR | Zbl
[15] Double Hurwitz numbers via the infinite wedge, Trans. Amer. Math. Soc., Volume 367 (2015) no. 9, pp. 6415-6440 | DOI | MR | Zbl
[16] Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys., Volume 105 (2015) no. 8, pp. 1057-1084 | DOI | MR | Zbl
[17] Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), Volume 163 (2006) no. 2, pp. 517-560 | DOI | MR | Zbl
[18] Oscar — Open Source Computer Algebra Research system, Version 0.8.3-DEV (2022) https://oscar.computeralgebra.de
[19] Chamber behavior of double Hurwitz numbers in genus 0, Adv. Math., Volume 217 (2008) no. 1, pp. 79-96 | DOI | MR | Zbl
[20] On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. (2), Volume 86 (2012) no. 2, pp. 407-432 | DOI | MR | Zbl
Cited by Sources: