Twisted Hurwitz numbers: Tropical and polynomial structures
Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1075-1101.

Hurwitz numbers count covers of curves satisfying fixed ramification data. Via monodromy representation, this counting problem can be transformed to a problem of counting factorizations in the symmetric group. This and other beautiful connections make Hurwitz numbers a longstanding active research topic. In recent work [4], a new enumerative invariant called b-Hurwitz number was introduced, which enumerates non-orientable branched coverings. For b=1, we obtain twisted Hurwitz numbers which were linked to surgery theory in [1] and admit a representation as factorisations in the symmetric group. In this paper, we derive a tropical interpretation of twisted Hurwitz numbers in terms of tropical covers and study their polynomial structure.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.368
Classification: 14T15, 14N10, 57M12, 05C30
Keywords: Tropical geometry, Hurwitz numbers

Hahn, Marvin Anas 1; Markwig, Hannah 2

1 Trinity College Dublin School of Mathematics 17 Westland Row Dublin Ireland
2 Eberhard-Karls-University Tuebingen Fachbereich Mathematik Auf der Morgenstelle 10 72076 Tübingen Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2024__7_4_1075_0,
     author = {Hahn, Marvin Anas and Markwig, Hannah},
     title = {Twisted {Hurwitz} numbers: {Tropical} and polynomial structures},
     journal = {Algebraic Combinatorics},
     pages = {1075--1101},
     publisher = {The Combinatorics Consortium},
     volume = {7},
     number = {4},
     year = {2024},
     doi = {10.5802/alco.368},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.368/}
}
TY  - JOUR
AU  - Hahn, Marvin Anas
AU  - Markwig, Hannah
TI  - Twisted Hurwitz numbers: Tropical and polynomial structures
JO  - Algebraic Combinatorics
PY  - 2024
SP  - 1075
EP  - 1101
VL  - 7
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.368/
DO  - 10.5802/alco.368
LA  - en
ID  - ALCO_2024__7_4_1075_0
ER  - 
%0 Journal Article
%A Hahn, Marvin Anas
%A Markwig, Hannah
%T Twisted Hurwitz numbers: Tropical and polynomial structures
%J Algebraic Combinatorics
%D 2024
%P 1075-1101
%V 7
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.368/
%R 10.5802/alco.368
%G en
%F ALCO_2024__7_4_1075_0
Hahn, Marvin Anas; Markwig, Hannah. Twisted Hurwitz numbers: Tropical and polynomial structures. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1075-1101. doi : 10.5802/alco.368. https://alco.centre-mersenne.org/articles/10.5802/alco.368/

[1] Burman, Yurii; Fesler, Raphaël Ribbon decomposition and twisted Hurwitz numbers, Math. Res. Rep., Volume 5 (2024), pp. 1-19 | DOI | MR | Zbl

[2] Cavalieri, Renzo; Johnson, Paul; Markwig, Hannah Tropical Hurwitz numbers, J. Algebraic Combin., Volume 32 (2010) no. 2, pp. 241-265 | DOI | MR | Zbl

[3] Cavalieri, Renzo; Johnson, Paul; Markwig, Hannah Wall crossings for double Hurwitz numbers, Adv. Math., Volume 228 (2011) no. 4, pp. 1894-1937 | DOI | MR | Zbl

[4] Chapuy, Guillaume; Dołęga, Maciej Non-orientable branched coverings, b-Hurwitz numbers, and positivity for multiparametric Jack expansions, Adv. Math., Volume 409 (2022), Paper no. 108645, 72 pages | DOI | MR | Zbl

[5] Do, Norman; Norbury, Paul Pruned Hurwitz numbers, Trans. Amer. Math. Soc., Volume 370 (2018) no. 5, pp. 3053-3084 | DOI | MR | Zbl

[6] GAP — Groups, Algorithms, and Programming, Version 4.7.8 (2015) https://www.gap-system.org

[7] Goulden, I. P.; Guay-Paquet, Mathieu; Novak, Jonathan Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal, Volume 21 (2014) no. 1, pp. 71-89 | DOI | Numdam | MR | Zbl

[8] Goulden, I. P.; Jackson, D. M. Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions, Trans. Amer. Math. Soc., Volume 348 (1996) no. 3, pp. 873-892 | DOI | MR | Zbl

[9] Goulden, I. P.; Jackson, D. M.; Vakil, R. Towards the geometry of double Hurwitz numbers, Adv. Math., Volume 198 (2005) no. 1, pp. 43-92 | DOI | MR | Zbl

[10] Hahn, Marvin Anas Pruned double Hurwitz numbers, Electron. J. Combin., Volume 24 (2017) no. 3, Paper no. 3.66, 32 pages | DOI | MR | Zbl

[11] Hahn, Marvin Anas Bi-pruned Hurwitz numbers, J. Combin. Theory Ser. A, Volume 174 (2020), Paper no. 105240, 30 pages | DOI | MR | Zbl

[12] Hahn, Marvin Anas; Kramer, Reinier; Lewanski, Danilo Wall-crossing formulae and strong piecewise polynomiality for mixed Grothendieck dessins d’enfant, monotone, and double simple Hurwitz numbers, Adv. Math., Volume 336 (2018), pp. 38-69 | DOI | MR | Zbl

[13] Hahn, Marvin Anas; Lewański, Danilo Wall-crossing and recursion formulae for tropical Jucys covers, Trans. Amer. Math. Soc., Volume 373 (2020) no. 7, pp. 4685-4711 | DOI | MR | Zbl

[14] Hurwitz, A. Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann., Volume 41 (1892) no. 3, pp. 403-442 | DOI | MR | Zbl

[15] Johnson, Paul Double Hurwitz numbers via the infinite wedge, Trans. Amer. Math. Soc., Volume 367 (2015) no. 9, pp. 6415-6440 | DOI | MR | Zbl

[16] Kazarian, Maxim; Zograf, Peter Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys., Volume 105 (2015) no. 8, pp. 1057-1084 | DOI | MR | Zbl

[17] Okounkov, A.; Pandharipande, R. Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), Volume 163 (2006) no. 2, pp. 517-560 | DOI | MR | Zbl

[18] Oscar — Open Source Computer Algebra Research system, Version 0.8.3-DEV (2022) https://oscar.computeralgebra.de

[19] Shadrin, S.; Shapiro, M.; Vainshtein, A. Chamber behavior of double Hurwitz numbers in genus 0, Adv. Math., Volume 217 (2008) no. 1, pp. 79-96 | DOI | MR | Zbl

[20] Shadrin, S.; Spitz, L.; Zvonkine, D. On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. (2), Volume 86 (2012) no. 2, pp. 407-432 | DOI | MR | Zbl

Cited by Sources: