We construct atomic decompositions for crystals of type $C_{2}$ and use them to define a charge statistic, thus providing positive combinatorial formulas for the corresponding Kostka–Foulkes polynomials. Our methods include Kashiwara–Nakashima tableaux combinatorics as well as the combinatorics of string polytopes and twisted Bruhat graphs.
Revised:
Accepted:
Published online:
Keywords: crystals, charge
Patimo, Leonardo 1; Torres, Jacinta 2

@article{ALCO_2025__8_2_521_0, author = {Patimo, Leonardo and Torres, Jacinta}, title = {Atoms and charge in type $C_2$}, journal = {Algebraic Combinatorics}, pages = {521--574}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.411}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.411/} }
TY - JOUR AU - Patimo, Leonardo AU - Torres, Jacinta TI - Atoms and charge in type $C_2$ JO - Algebraic Combinatorics PY - 2025 SP - 521 EP - 574 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.411/ DO - 10.5802/alco.411 LA - en ID - ALCO_2025__8_2_521_0 ER -
Patimo, Leonardo; Torres, Jacinta. Atoms and charge in type $C_2$. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 521-574. doi : 10.5802/alco.411. https://alco.centre-mersenne.org/articles/10.5802/alco.411/
[1] Kazhdan-Lusztig polynomials for , J. Pure Appl. Algebra, Volume 227 (2023) no. 9, Paper no. 107385, 37 pages | DOI | MR | Zbl
[2] Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005, xii+434 pages (Translated from the 1975 and 1982 French originals by Andrew Pressley) | MR
[3] Crystals via the affine Grassmannian, Duke Math. J., Volume 107 (2001) no. 3, pp. 561-575 | DOI | MR | Zbl
[4] Limits of weight spaces, Lusztig’s -analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc., Volume 2 (1989) no. 3, pp. 517-533 | DOI | MR | Zbl
[5] Crystal bases, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages (Representations and combinatorics) | DOI | MR
[6] A positive combinatorial formula for symplectic Kostka-Foulkes polynomials I: Rows, J. Algebra, Volume 560 (2020), pp. 1253-1296 | DOI | MR | Zbl
[7] Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J., Volume 116 (2003) no. 2, pp. 299-318 | DOI | MR | Zbl
[8] Mirković-Vilonen cycles and polytopes, Ann. of Math. (2), Volume 171 (2010) no. 1, pp. 245-294 | DOI | MR | Zbl
[9] Crystal graphs for representations of the -analogue of classical Lie algebras, J. Algebra, Volume 165 (1994) no. 2, pp. 295-345 | DOI | MR | Zbl
[10] Spherical functions and a -analogue of Kostant’s weight multiplicity formula, Invent. Math., Volume 66 (1982) no. 3, pp. 461-468 | DOI | MR | Zbl
[11] On the Kazhdan-Lusztig basis of a spherical Hecke algebra, Represent. Theory, Volume 9 (2005), pp. 417-425 | DOI | MR | Zbl
[12] A new statistics on words, Ann. Discrete Math., Volume 6 (1980), pp. 251-255 | DOI | MR | Zbl
[13] Crystal graphs and -analogues of weight multiplicities for the root system , Lett. Math. Phys., Volume 35 (1995) no. 4, pp. 359-374 | DOI | MR | Zbl
[14] Schensted-type correspondence, plactic monoid, and jeu de taquin for type , J. Algebra, Volume 247 (2002) no. 2, pp. 295-331 | DOI | MR | Zbl
[15] Combinatorics of generalized exponents, Int. Math. Res. Not. IMRN (2020) no. 16, pp. 4942-4992 | DOI | MR | Zbl
[16] Atomic decomposition of characters and crystals, Adv. Math., Volume 376 (2021), Paper no. 107453, 51 pages | DOI | MR | Zbl
[17] Crystal energy functions via the charge in types and , Math. Z., Volume 273 (2013) no. 1-2, pp. 401-426 | DOI | MR | Zbl
[18] Pre-canonical bases on affine Hecke algebras, Adv. Math., Volume 399 (2022), Paper no. 108255, 36 pages | DOI | MR | Zbl
[19] Cones, crystals, and patterns, Transform. Groups, Volume 3 (1998) no. 2, pp. 145-179 | DOI | MR | Zbl
[20] A generalization of the Littlewood-Richardson rule, J. Algebra, Volume 130 (1990) no. 2, pp. 328-368 | DOI | MR | Zbl
[21] Singularities, character formulas, and a -analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101-102, Soc. Math. France, Paris, 1983, pp. 208-229 | Numdam | MR | Zbl
[22] Introduction to tropical geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, Providence, RI, 2015, xii+363 pages | DOI | MR
[23] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 | DOI | MR | Zbl
[24] Kostka-Foulkes polynomials and Macdonald spherical functions, Surveys in combinatorics, 2003 (Bangor) (London Math. Soc. Lecture Note Ser.), Volume 307, Cambridge Univ. Press, Cambridge, 2003, pp. 325-370 | DOI | MR | Zbl
[25] Charges via the affine Grassmannian, 2021 | arXiv
[26] The charge statistic in type A via the Affine Grassmannian, 2024 | arXiv
[27] Demazure crystals and the energy function, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (Discrete Math. Theor. Comput. Sci. Proc.), Volume AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011, pp. 861-872 | MR | Zbl
[28] SageMath, the Sage Mathematics Software System (Version 9.2) (2020) (https://www.sagemath.org)
Cited by Sources: