Atoms and charge in type $C_2$
Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 521-574.

We construct atomic decompositions for crystals of type $C_{2}$ and use them to define a charge statistic, thus providing positive combinatorial formulas for the corresponding Kostka–Foulkes polynomials. Our methods include Kashiwara–Nakashima tableaux combinatorics as well as the combinatorics of string polytopes and twisted Bruhat graphs.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.411
Classification: 10X99, 14A12, 11L05
Keywords: crystals, charge

Patimo, Leonardo 1; Torres, Jacinta 2

1 University of Pisa L.go B. Pontecorvo 5 56127 Pisa (PI) Italy
2 Jagiellonian University in Kraków Department of Mathematics ul. prof. Stanisława Łojasiewicza 6 30-348 Kraków Poland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_2_521_0,
     author = {Patimo, Leonardo and Torres, Jacinta},
     title = {Atoms and charge in type $C_2$},
     journal = {Algebraic Combinatorics},
     pages = {521--574},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {2},
     year = {2025},
     doi = {10.5802/alco.411},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.411/}
}
TY  - JOUR
AU  - Patimo, Leonardo
AU  - Torres, Jacinta
TI  - Atoms and charge in type $C_2$
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 521
EP  - 574
VL  - 8
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.411/
DO  - 10.5802/alco.411
LA  - en
ID  - ALCO_2025__8_2_521_0
ER  - 
%0 Journal Article
%A Patimo, Leonardo
%A Torres, Jacinta
%T Atoms and charge in type $C_2$
%J Algebraic Combinatorics
%D 2025
%P 521-574
%V 8
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.411/
%R 10.5802/alco.411
%G en
%F ALCO_2025__8_2_521_0
Patimo, Leonardo; Torres, Jacinta. Atoms and charge in type $C_2$. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 521-574. doi : 10.5802/alco.411. https://alco.centre-mersenne.org/articles/10.5802/alco.411/

[1] Batistelli, Karina; Bingham, Aram; Plaza, David Kazhdan-Lusztig polynomials for B ˜ 2 , J. Pure Appl. Algebra, Volume 227 (2023) no. 9, Paper no. 107385, 37 pages | DOI | MR | Zbl

[2] Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005, xii+434 pages (Translated from the 1975 and 1982 French originals by Andrew Pressley) | MR

[3] Braverman, Alexander; Gaitsgory, Dennis Crystals via the affine Grassmannian, Duke Math. J., Volume 107 (2001) no. 3, pp. 561-575 | DOI | MR | Zbl

[4] Brylinski, Ranee Kathryn Limits of weight spaces, Lusztig’s q-analogs, and fiberings of adjoint orbits, J. Amer. Math. Soc., Volume 2 (1989) no. 3, pp. 517-533 | DOI | MR | Zbl

[5] Bump, Daniel; Schilling, Anne Crystal bases, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages (Representations and combinatorics) | DOI | MR

[6] Dołęga, Maciej; Gerber, Thomas; Torres, Jacinta A positive combinatorial formula for symplectic Kostka-Foulkes polynomials I: Rows, J. Algebra, Volume 560 (2020), pp. 1253-1296 | DOI | MR | Zbl

[7] Ion, Bogdan Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J., Volume 116 (2003) no. 2, pp. 299-318 | DOI | MR | Zbl

[8] Kamnitzer, Joel Mirković-Vilonen cycles and polytopes, Ann. of Math. (2), Volume 171 (2010) no. 1, pp. 245-294 | DOI | MR | Zbl

[9] Kashiwara, Masaki; Nakashima, Toshiki Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra, Volume 165 (1994) no. 2, pp. 295-345 | DOI | MR | Zbl

[10] Kato, Shin-ichi Spherical functions and a q-analogue of Kostant’s weight multiplicity formula, Invent. Math., Volume 66 (1982) no. 3, pp. 461-468 | DOI | MR | Zbl

[11] Knop, Friedrich On the Kazhdan-Lusztig basis of a spherical Hecke algebra, Represent. Theory, Volume 9 (2005), pp. 417-425 | DOI | MR | Zbl

[12] Lascoux, A.; Schützenberger, M.-P. A new statistics on words, Ann. Discrete Math., Volume 6 (1980), pp. 251-255 | DOI | MR | Zbl

[13] Lascoux, Alain; Leclerc, Bernard; Thibon, Jean-Yves Crystal graphs and q-analogues of weight multiplicities for the root system A n , Lett. Math. Phys., Volume 35 (1995) no. 4, pp. 359-374 | DOI | MR | Zbl

[14] Lecouvey, Cédric Schensted-type correspondence, plactic monoid, and jeu de taquin for type C n , J. Algebra, Volume 247 (2002) no. 2, pp. 295-331 | DOI | MR | Zbl

[15] Lecouvey, Cédric; Lenart, Cristian Combinatorics of generalized exponents, Int. Math. Res. Not. IMRN (2020) no. 16, pp. 4942-4992 | DOI | MR | Zbl

[16] Lecouvey, Cédric; Lenart, Cristian Atomic decomposition of characters and crystals, Adv. Math., Volume 376 (2021), Paper no. 107453, 51 pages | DOI | MR | Zbl

[17] Lenart, Cristian; Schilling, Anne Crystal energy functions via the charge in types A and C, Math. Z., Volume 273 (2013) no. 1-2, pp. 401-426 | DOI | MR | Zbl

[18] Libedinsky, Nicolas; Patimo, Leonardo; Plaza, David Pre-canonical bases on affine Hecke algebras, Adv. Math., Volume 399 (2022), Paper no. 108255, 36 pages | DOI | MR | Zbl

[19] Littelmann, P. Cones, crystals, and patterns, Transform. Groups, Volume 3 (1998) no. 2, pp. 145-179 | DOI | MR | Zbl

[20] Littelmann, Peter A generalization of the Littlewood-Richardson rule, J. Algebra, Volume 130 (1990) no. 2, pp. 328-368 | DOI | MR | Zbl

[21] Lusztig, George Singularities, character formulas, and a q-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) (Astérisque), Volume 101-102, Soc. Math. France, Paris, 1983, pp. 208-229 | Numdam | MR | Zbl

[22] Maclagan, Diane; Sturmfels, Bernd Introduction to tropical geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, Providence, RI, 2015, xii+363 pages | DOI | MR

[23] Mirković, I.; Vilonen, K. Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Volume 166 (2007) no. 1, pp. 95-143 | DOI | MR | Zbl

[24] Nelsen, Kendra; Ram, Arun Kostka-Foulkes polynomials and Macdonald spherical functions, Surveys in combinatorics, 2003 (Bangor) (London Math. Soc. Lecture Note Ser.), Volume 307, Cambridge Univ. Press, Cambridge, 2003, pp. 325-370 | DOI | MR | Zbl

[25] Patimo, Leonardo Charges via the affine Grassmannian, 2021 | arXiv

[26] Patimo, Leonardo The charge statistic in type A via the Affine Grassmannian, 2024 | arXiv

[27] Schilling, Anne; Tingley, Peter Demazure crystals and the energy function, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (Discrete Math. Theor. Comput. Sci. Proc.), Volume AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2011, pp. 861-872 | MR | Zbl

[28] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.2) (2020) (https://www.sagemath.org)

Cited by Sources: