In a paper by Cai Heng Li in Bull. London Math. Soc. 33 (2001), it was suggested that ‘non-basic’ $2$-arc-transitive graphs of prime-power order that occur as normal covers of smaller $2$-arc-transitive graphs might be rare and difficult to construct. This note describes some of the background to Li’s suggestion, and gives some examples of small valency, and then goes on to show that in fact there are infinitely many examples of valency $d$, for every integer $d \ge 2$. It is also noted that the hypercubes $Q_n$ for $n\ge 4$ even, together with a $2$-arc-transitive group $G$ of index $2$ in $\mathrm{Aut}(Q_n)$, show that the claims of Corollary 1.2 in the above paper by Li are not quite correct.
Revised:
Accepted:
Published online:
Keywords: graph, $s$-arc-transitive, normal cover
Conder, Marston 1; Potočnik, Primož 2

@article{ALCO_2025__8_2_469_0, author = {Conder, Marston and Poto\v{c}nik, Primo\v{z}}, title = {Normal covers of 2-arc-transitive graphs of prime-power order}, journal = {Algebraic Combinatorics}, pages = {469--478}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.415}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.415/} }
TY - JOUR AU - Conder, Marston AU - Potočnik, Primož TI - Normal covers of 2-arc-transitive graphs of prime-power order JO - Algebraic Combinatorics PY - 2025 SP - 469 EP - 478 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.415/ DO - 10.5802/alco.415 LA - en ID - ALCO_2025__8_2_469_0 ER -
%0 Journal Article %A Conder, Marston %A Potočnik, Primož %T Normal covers of 2-arc-transitive graphs of prime-power order %J Algebraic Combinatorics %D 2025 %P 469-478 %V 8 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.415/ %R 10.5802/alco.415 %G en %F ALCO_2025__8_2_469_0
Conder, Marston; Potočnik, Primož. Normal covers of 2-arc-transitive graphs of prime-power order. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 469-478. doi : 10.5802/alco.415. https://alco.centre-mersenne.org/articles/10.5802/alco.415/
[1] Overgroups of primitive groups, J. Aust. Math. Soc., Volume 87 (2009) no. 1, pp. 37-82 | DOI | MR | Zbl
[2] The Magma algebra system. I. The user language, J. Symbolic Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[3] A refined classification of symmetric cubic graphs, J. Algebra, Volume 322 (2009) no. 3, pp. 722-740 | DOI | MR | Zbl
[4] Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra, Volume 27 (1999) no. 8, pp. 3727-3754 | DOI | MR | Zbl
[5] Arc transitivity in graphs, Quart. J. Math. Oxford Ser. (2), Volume 24 (1973), pp. 399-407 | DOI | MR | Zbl
[6] Analysing finite locally -arc transitive graphs, Trans. Amer. Math. Soc., Volume 356 (2004) no. 1, pp. 291-317 | DOI | MR | Zbl
[7] On finite affine -arc transitive graphs, European J. Combin., Volume 14 (1993) no. 5, pp. 421-444 | DOI | MR | Zbl
[8] Finite -arc transitive graphs of prime-power order, Bull. London Math. Soc., Volume 33 (2001) no. 2, pp. 129-137 | MR | Zbl
[9] -arc-transitive graphs and normal subgroups, J. Algebra, Volume 421 (2015), pp. 331-348 | MR | Zbl
[10] A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra, Volume 111 (1987) no. 2, pp. 365-383 | DOI | MR | Zbl
[11] Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory, Volume 8 (1984) no. 1, pp. 55-68 | DOI | MR | Zbl
[12] Elementary abelian covers of graphs, J. Algebraic Combin., Volume 20 (2004) no. 1, pp. 71-97 | DOI | MR | Zbl
[13] On cubic graphs admitting an edge-transitive solvable group, J. Algebraic Combin., Volume 20 (2004) no. 1, pp. 99-113 | DOI | MR | Zbl
[14] On symmetric and locally finite actions of groups on the quintic tree, Discrete Math., Volume 313 (2013) no. 21, pp. 2486-2492 | DOI | MR | Zbl
[15] A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index , European J. Combin., Volume 30 (2009) no. 5, pp. 1323-1336 | DOI | MR | Zbl
[16] The inclusion problem for finite primitive permutation groups, Proc. London Math. Soc. (3), Volume 60 (1990) no. 1, pp. 68-88 | DOI | MR | Zbl
[17] An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to -arc transitive graphs, J. London Math. Soc. (2), Volume 47 (1993) no. 2, pp. 227-239 | DOI | MR | Zbl
[18] Enumerating groups acting regularly on a -dimensional cube, Comm. Algebra, Volume 37 (2009) no. 7, pp. 2540-2545 | DOI | MR | Zbl
[19] Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups, J. Group Theory, Volume 15 (2012) no. 1, pp. 23-35 | DOI | MR | Zbl
[20] Supplement to “The group and graphs with a locally linear group of automorphisms” by V. I. Trofimov and R. M. Weiss [MR2575369], Math. Proc. Cambridge Philos. Soc., Volume 148 (2010) no. 1, pp. 33-45 | DOI | MR | Zbl
[21] A family of cubical graphs, Proc. Cambridge Philos. Soc., Volume 43 (1947), pp. 459-474 | DOI | MR | Zbl
[22] Thompson-Wielandt-like theorems revisited, Bull. London Math. Soc., Volume 35 (2003) no. 1, pp. 30-36 | DOI | MR | Zbl
[23] Graphs which are locally Grassmann, Math. Ann., Volume 297 (1993) no. 2, pp. 325-334 | DOI | MR | Zbl
Cited by Sources: