Intersection cohomology of type-A toric varieties
Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 575-596.

Type-A toric varieties may be obtained as GIT quotients with respect to a torus action with weights corresponding to roots of the group $ SL(k) $ for some $ k>1 $. These varieties appear in various important applications, in particular, as normal cones to strata in moduli spaces of vector bundles. In this paper, we describe the intersection Betti numbers of these varieties, and those of some associated projective varieties. We present an elegant combinatorial model for these numbers, and, using the work of Hausel and Sturmfels, we show that the relevant intersection cohomology groups are endowed with a canonical product structure.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.417
Classification: 14N10, 14F43, 14M25
Keywords: toric varieties, intersection cohomology, acyclic graphs

Szenes, Andras 1; Trapeznikova, Olga 1

1 Section de mathématiques Université de Genève
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_2_575_0,
     author = {Szenes, Andras and Trapeznikova, Olga},
     title = {Intersection cohomology of {type-A} toric varieties},
     journal = {Algebraic Combinatorics},
     pages = {575--596},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {2},
     year = {2025},
     doi = {10.5802/alco.417},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.417/}
}
TY  - JOUR
AU  - Szenes, Andras
AU  - Trapeznikova, Olga
TI  - Intersection cohomology of type-A toric varieties
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 575
EP  - 596
VL  - 8
IS  - 2
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.417/
DO  - 10.5802/alco.417
LA  - en
ID  - ALCO_2025__8_2_575_0
ER  - 
%0 Journal Article
%A Szenes, Andras
%A Trapeznikova, Olga
%T Intersection cohomology of type-A toric varieties
%J Algebraic Combinatorics
%D 2025
%P 575-596
%V 8
%N 2
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.417/
%R 10.5802/alco.417
%G en
%F ALCO_2025__8_2_575_0
Szenes, Andras; Trapeznikova, Olga. Intersection cohomology of type-A toric varieties. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 575-596. doi : 10.5802/alco.417. https://alco.centre-mersenne.org/articles/10.5802/alco.417/

[1] Beilinson, Alexander; Bernstein, Joseph; Deligne, Pierre Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982, pp. 5-171 | MR | Zbl

[2] Brion, Michel; Vergne, Michèle Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 5, pp. 715-741 | DOI | Numdam | MR | Zbl

[3] de Cataldo, Mark Andrea; Migliorini, Luca The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009) no. 4, pp. 535-633 | DOI | MR | Zbl

[4] de Cataldo, Mark Andrea; Migliorini, Luca; Mustaţă, Mircea Combinatorics and topology of proper toric maps, J. Reine Angew. Math., Volume 744 (2018), pp. 133-163 | DOI | MR | Zbl

[5] Felisetti, Camilla; Szenes, Andras; Trapeznikova, Olga Parabolic bundles and the intersection cohomology of moduli spaces of vector bundles on curves, 2025 | arXiv

[6] Fieseler, Karl-Heinz Rational intersection cohomology of projective toric varieties, J. Reine Angew. Math., Volume 413 (1991), pp. 88-98 | MR | Zbl

[7] Fulton, William Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, xii+157 pages | DOI | MR

[8] Goresky, Mark; MacPherson, Robert Intersection homology theory, Topology, Volume 19 (1980) no. 2, pp. 135-162 | DOI | MR | Zbl

[9] Hausel, Tamás; Sturmfels, Bernd Toric hyperKähler varieties, Doc. Math., Volume 7 (2002), pp. 495-534 | DOI | MR | Zbl

[10] Hu, Yi; Liu, Chien-Hao; Yau, Shing-Tung Toric morphisms and fibrations of toric Calabi-Yau hypersurfaces, Adv. Theor. Math. Phys., Volume 6 (2002) no. 3, pp. 457-506 | DOI | MR | Zbl

[11] Mauri, Mirko Intersection cohomology of rank 2 character varieties of surface groups, J. Inst. Math. Jussieu, Volume 22 (2023) no. 4, pp. 1615-1654 | DOI | MR | Zbl

[12] Mauri, Mirko; Migliorini, Luca Hodge-to-singular correspondence for reduced curves, J. Eur. Math. Soc. (JEMS) (2024), p. published online first | DOI

[13] McConnell, Mark The rational homology of toric varieties is not a combinatorial invariant, Proc. Amer. Math. Soc., Volume 105 (1989) no. 4, pp. 986-991 | DOI | MR | Zbl

[14] Meinhardt, Sven; Reineke, Markus Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math., Volume 754 (2019), pp. 143-178 | DOI | MR | Zbl

[15] Mozgovoy, Sergey; Reineke, Markus Intersection cohomology of moduli spaces of vector bundles over curves, 2024 | arXiv

[16] Stanley, Richard Generalized H-vectors, intersection cohomology of toric varieties, and related results, Commutative algebra and combinatorics (Kyoto, 1985) (Adv. Stud. Pure Math.), Volume 11, North-Holland, Amsterdam, 1987, pp. 187-213 | DOI | MR | Zbl

[17] Szenes, András; Vergne, Michèle Toric reduction and a conjecture of Batyrev and Materov, Invent. Math., Volume 158 (2004) no. 3, pp. 453-495 | DOI | MR | Zbl

[18] Winkler, Hannah Triangulations of Gale duals of root polytopes, Ph. D. Thesis, San Francisco State University (2014)

Cited by Sources: