Type-A toric varieties may be obtained as GIT quotients with respect to a torus action with weights corresponding to roots of the group $ SL(k) $ for some $ k>1 $. These varieties appear in various important applications, in particular, as normal cones to strata in moduli spaces of vector bundles. In this paper, we describe the intersection Betti numbers of these varieties, and those of some associated projective varieties. We present an elegant combinatorial model for these numbers, and, using the work of Hausel and Sturmfels, we show that the relevant intersection cohomology groups are endowed with a canonical product structure.
Revised:
Accepted:
Published online:
Keywords: toric varieties, intersection cohomology, acyclic graphs
Szenes, Andras 1; Trapeznikova, Olga 1

@article{ALCO_2025__8_2_575_0, author = {Szenes, Andras and Trapeznikova, Olga}, title = {Intersection cohomology of {type-A} toric varieties}, journal = {Algebraic Combinatorics}, pages = {575--596}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {2}, year = {2025}, doi = {10.5802/alco.417}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.417/} }
TY - JOUR AU - Szenes, Andras AU - Trapeznikova, Olga TI - Intersection cohomology of type-A toric varieties JO - Algebraic Combinatorics PY - 2025 SP - 575 EP - 596 VL - 8 IS - 2 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.417/ DO - 10.5802/alco.417 LA - en ID - ALCO_2025__8_2_575_0 ER -
%0 Journal Article %A Szenes, Andras %A Trapeznikova, Olga %T Intersection cohomology of type-A toric varieties %J Algebraic Combinatorics %D 2025 %P 575-596 %V 8 %N 2 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.417/ %R 10.5802/alco.417 %G en %F ALCO_2025__8_2_575_0
Szenes, Andras; Trapeznikova, Olga. Intersection cohomology of type-A toric varieties. Algebraic Combinatorics, Volume 8 (2025) no. 2, pp. 575-596. doi : 10.5802/alco.417. https://alco.centre-mersenne.org/articles/10.5802/alco.417/
[1] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982, pp. 5-171 | MR | Zbl
[2] Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 5, pp. 715-741 | DOI | Numdam | MR | Zbl
[3] The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009) no. 4, pp. 535-633 | DOI | MR | Zbl
[4] Combinatorics and topology of proper toric maps, J. Reine Angew. Math., Volume 744 (2018), pp. 133-163 | DOI | MR | Zbl
[5] Parabolic bundles and the intersection cohomology of moduli spaces of vector bundles on curves, 2025 | arXiv
[6] Rational intersection cohomology of projective toric varieties, J. Reine Angew. Math., Volume 413 (1991), pp. 88-98 | MR | Zbl
[7] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, xii+157 pages | DOI | MR
[8] Intersection homology theory, Topology, Volume 19 (1980) no. 2, pp. 135-162 | DOI | MR | Zbl
[9] Toric hyperKähler varieties, Doc. Math., Volume 7 (2002), pp. 495-534 | DOI | MR | Zbl
[10] Toric morphisms and fibrations of toric Calabi-Yau hypersurfaces, Adv. Theor. Math. Phys., Volume 6 (2002) no. 3, pp. 457-506 | DOI | MR | Zbl
[11] Intersection cohomology of rank 2 character varieties of surface groups, J. Inst. Math. Jussieu, Volume 22 (2023) no. 4, pp. 1615-1654 | DOI | MR | Zbl
[12] Hodge-to-singular correspondence for reduced curves, J. Eur. Math. Soc. (JEMS) (2024), p. published online first | DOI
[13] The rational homology of toric varieties is not a combinatorial invariant, Proc. Amer. Math. Soc., Volume 105 (1989) no. 4, pp. 986-991 | DOI | MR | Zbl
[14] Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math., Volume 754 (2019), pp. 143-178 | DOI | MR | Zbl
[15] Intersection cohomology of moduli spaces of vector bundles over curves, 2024 | arXiv
[16] Generalized -vectors, intersection cohomology of toric varieties, and related results, Commutative algebra and combinatorics (Kyoto, 1985) (Adv. Stud. Pure Math.), Volume 11, North-Holland, Amsterdam, 1987, pp. 187-213 | DOI | MR | Zbl
[17] Toric reduction and a conjecture of Batyrev and Materov, Invent. Math., Volume 158 (2004) no. 3, pp. 453-495 | DOI | MR | Zbl
[18] Triangulations of Gale duals of root polytopes, Ph. D. Thesis, San Francisco State University (2014)
Cited by Sources: