Weights on homogeneous coherent configurations
Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 765-773.

D. G. Higman generalized the notion of a coherent configuration and defined a weight. In this article, we will modify the definition and investigate weights on coherent configurations. If our weights are on a thin homogeneous coherent configuration, that is essentially a finite group, then there is a natural correspondence between the set of equivalence classes of weights and the $2$-cohomology group of the group. We also give a construction of weights as a generalization of Higman’s method using monomial representations of finite groups.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.420
Classification: 05E30
Keywords: homogeneous coherent configuration, weight, association scheme, factor set, cohomology

Hanaki, Akihide 1

1 Faculty of Science Shinshu University Matsumoto 390-8621 Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_3_765_0,
     author = {Hanaki, Akihide},
     title = {Weights on homogeneous coherent configurations},
     journal = {Algebraic Combinatorics},
     pages = {765--773},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {3},
     year = {2025},
     doi = {10.5802/alco.420},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.420/}
}
TY  - JOUR
AU  - Hanaki, Akihide
TI  - Weights on homogeneous coherent configurations
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 765
EP  - 773
VL  - 8
IS  - 3
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.420/
DO  - 10.5802/alco.420
LA  - en
ID  - ALCO_2025__8_3_765_0
ER  - 
%0 Journal Article
%A Hanaki, Akihide
%T Weights on homogeneous coherent configurations
%J Algebraic Combinatorics
%D 2025
%P 765-773
%V 8
%N 3
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.420/
%R 10.5802/alco.420
%G en
%F ALCO_2025__8_3_765_0
Hanaki, Akihide. Weights on homogeneous coherent configurations. Algebraic Combinatorics, Volume 8 (2025) no. 3, pp. 765-773. doi : 10.5802/alco.420. https://alco.centre-mersenne.org/articles/10.5802/alco.420/

[1] Goldberger, A.; Dula, G. Cohomology-developed matrices: constructing families of weighing matrices and automorphism actions, J. Algebraic Combin., Volume 60 (2024) no. 3, pp. 603-665 | DOI | MR | Zbl

[2] Higman, D. G. Monomial representations, Proceedings of the 1974 Sapporo Symposium on Finite Groups (1974)

[3] Higman, D. G. Coherent configurations. I. Ordinary representation theory, Geometriae Dedicata, Volume 4 (1975) no. 1, pp. 1-32 | MR | Zbl

[4] Higman, D. G. Coherent configurations. II. Weights, Geometriae Dedicata, Volume 5 (1976) no. 4, pp. 413-424 | DOI | MR | Zbl

[5] Hirasaka, M.; Muzychuk, M. Association schemes generated by a non-symmetric relation of valency 2, Discrete Math., Volume 244 (2002) no. 1-3, pp. 109-135 | DOI | MR | Zbl

[6] Horadam, K. J.; de Launey, W. Cocyclic development of designs, J. Algebraic Combin., Volume 2 (1993) no. 3, pp. 267-290 | DOI | MR | Zbl

[7] Nagao, H.; Tsushima, Y. Representations of finite groups, Academic Press Inc., 1989, xviii+424 pages | MR | Zbl

[8] Zieschang, P.-H. An algebraic approach to association schemes, Lecture Notes in Mathematics, 1628, Springer-Verlag, 1996, xii+189 pages | DOI | MR | Zbl

[9] Zieschang, P.-H. Theory of association schemes, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005, xvi+283 pages | MR | Zbl

Cited by Sources: