A cosmological polytope is defined for a given Feynman diagram, and its canonical form may be used to compute the contribution of the Feynman diagram to the wavefunction of certain cosmological models. Given a subdivision of a polytope, its canonical form is obtained as a sum of the canonical forms of the facets of the subdivision. In this paper, we identify such formulas for the canonical form via algebraic techniques. It is shown that the toric ideal of every cosmological polytope admits a Gröbner basis with a squarefree initial ideal, yielding a regular unimodular triangulation of the polytope. In specific instances, including trees and cycles, we recover graphical characterizations of the facets of such triangulations that may be used to compute the desired canonical form. For paths and cycles, these characterizations admit simple enumeration. Hence, we obtain formulas for the normalized volume of these polytopes, extending previous observations of Kühne and Monin.
Revised:
Accepted:
Published online:
Keywords: cosmological polytopes, toric ideals, Gröbner basis
Juhnke, Martina 1; Solus, Liam 2; Venturello, Lorenzo 3

@article{ALCO_2025__8_4_1141_0, author = {Juhnke, Martina and Solus, Liam and Venturello, Lorenzo}, title = {Triangulations of cosmological polytopes}, journal = {Algebraic Combinatorics}, pages = {1141--1168}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.430}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.430/} }
TY - JOUR AU - Juhnke, Martina AU - Solus, Liam AU - Venturello, Lorenzo TI - Triangulations of cosmological polytopes JO - Algebraic Combinatorics PY - 2025 SP - 1141 EP - 1168 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.430/ DO - 10.5802/alco.430 LA - en ID - ALCO_2025__8_4_1141_0 ER -
%0 Journal Article %A Juhnke, Martina %A Solus, Liam %A Venturello, Lorenzo %T Triangulations of cosmological polytopes %J Algebraic Combinatorics %D 2025 %P 1141-1168 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.430/ %R 10.5802/alco.430 %G en %F ALCO_2025__8_4_1141_0
Juhnke, Martina; Solus, Liam; Venturello, Lorenzo. Triangulations of cosmological polytopes. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1141-1168. doi : 10.5802/alco.430. https://alco.centre-mersenne.org/articles/10.5802/alco.430/
[1] Positive geometries and canonical forms, J. High Energy Phys. (2017) no. 11, Paper no. 39, front matter+121 pages | DOI | MR | Zbl
[2] Cosmological Polytopes and the Wavefunction of the Universe, 2017 | arXiv | Zbl
[3] Positive amplitudes in the amplituhedron, J. High Energy Phys. (2015) no. 8, Paper no. 30, front matter+24 pages | DOI | MR | Zbl
[4] Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | MR | Zbl
[5] Physical representations for scattering amplitudes and the wavefunction of the universe, SciPost Phys., Volume 12 (2022) no. 6, Paper no. 192, 32 pages | DOI | MR
[6] Ehrhart theory of cosmological polytopes, 2024 | arXiv | Zbl
[7] Triangulations, Algorithms and Computation in Mathematics, 25, Springer-Verlag, Berlin, 2010, xiv+535 pages | DOI | MR | Zbl
[8] Parity duality for the amplituhedron, Compos. Math., Volume 156 (2020) no. 11, pp. 2207-2262 | DOI | MR | Zbl
[9] Positive geometry, local triangulations, and the dual of the amplituhedron, J. High Energy Phys. (2021) no. 1, Paper no. 35, 99 pages | DOI | MR | Zbl
[10] Binomial ideals, Graduate Texts in Mathematics, 279, Springer, Cham, 2018, xix+321 pages | DOI | MR | Zbl
[11] Arithmetic aspects of symmetric edge polytopes, Mathematika, Volume 65 (2019) no. 3, pp. 763-784 | DOI | MR | Zbl
[12] Sign flip triangulations of the amplituhedron, J. High Energy Phys. (2020) no. 5, Paper no. 121, 33 pages | DOI | MR
[13] Faces of cosmological polytopes, Ann. Inst. Henri Poincaré D, Volume 12 (2025) no. 3, pp. 445-461 | DOI | MR | Zbl
[14] An invitation to positive geometries, Open problems in algebraic combinatorics (Proc. Sympos. Pure Math.), Volume 110, Amer. Math. Soc., Providence, RI, 2024, pp. 159-179 | MR
[15] The cosmological polytope of the complete bipartite graph , Masters thesis, KTH, Mathematics (Div.) (2023), 57 pages
[16] Roots of Ehrhart polynomials arising from graphs, J. Algebraic Combin., Volume 34 (2011) no. 4, pp. 721-749 | DOI | MR | Zbl
[17] Triangulations and canonical forms of amplituhedra: a fiber-based approach beyond polytopes, Comm. Math. Phys., Volume 387 (2021) no. 2, pp. 927-972 | DOI | MR | Zbl
[18] The On-Line Encyclopedia of Integer Sequences, 2025 http://oeis.org/a020522 (Entry A020522)
[19] Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | DOI | MR | Zbl
Cited by Sources: