Triangulations of cosmological polytopes
Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1141-1168.

A cosmological polytope is defined for a given Feynman diagram, and its canonical form may be used to compute the contribution of the Feynman diagram to the wavefunction of certain cosmological models. Given a subdivision of a polytope, its canonical form is obtained as a sum of the canonical forms of the facets of the subdivision. In this paper, we identify such formulas for the canonical form via algebraic techniques. It is shown that the toric ideal of every cosmological polytope admits a Gröbner basis with a squarefree initial ideal, yielding a regular unimodular triangulation of the polytope. In specific instances, including trees and cycles, we recover graphical characterizations of the facets of such triangulations that may be used to compute the desired canonical form. For paths and cycles, these characterizations admit simple enumeration. Hence, we obtain formulas for the normalized volume of these polytopes, extending previous observations of Kühne and Monin.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.430
Classification: 52B20, 05E45, 13F65
Keywords: cosmological polytopes, toric ideals, Gröbner basis

Juhnke, Martina 1; Solus, Liam 2; Venturello, Lorenzo 3

1 Department of Mathematics University of Osnabrück Albrechtstraße 28a 49076 Osnabrück Germany
2 Department of Mathematics KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
3 Department of Mathematics Università di Pisa L.go B. Pontecorvo 5 56127 Pisa Italy
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_4_1141_0,
     author = {Juhnke, Martina and Solus, Liam and Venturello, Lorenzo},
     title = {Triangulations of cosmological polytopes},
     journal = {Algebraic Combinatorics},
     pages = {1141--1168},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {4},
     year = {2025},
     doi = {10.5802/alco.430},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.430/}
}
TY  - JOUR
AU  - Juhnke, Martina
AU  - Solus, Liam
AU  - Venturello, Lorenzo
TI  - Triangulations of cosmological polytopes
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1141
EP  - 1168
VL  - 8
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.430/
DO  - 10.5802/alco.430
LA  - en
ID  - ALCO_2025__8_4_1141_0
ER  - 
%0 Journal Article
%A Juhnke, Martina
%A Solus, Liam
%A Venturello, Lorenzo
%T Triangulations of cosmological polytopes
%J Algebraic Combinatorics
%D 2025
%P 1141-1168
%V 8
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.430/
%R 10.5802/alco.430
%G en
%F ALCO_2025__8_4_1141_0
Juhnke, Martina; Solus, Liam; Venturello, Lorenzo. Triangulations of cosmological polytopes. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1141-1168. doi : 10.5802/alco.430. https://alco.centre-mersenne.org/articles/10.5802/alco.430/

[1] Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas Positive geometries and canonical forms, J. High Energy Phys. (2017) no. 11, Paper no. 39, front matter+121 pages | DOI | MR | Zbl

[2] Arkani-Hamed, Nima; Benincasa, Paolo; Postnikov, Alexander Cosmological Polytopes and the Wavefunction of the Universe, 2017 | arXiv | Zbl

[3] Arkani-Hamed, Nima; Hodges, Andrew; Trnka, Jaroslav Positive amplitudes in the amplituhedron, J. High Energy Phys. (2015) no. 8, Paper no. 30, front matter+24 pages | DOI | MR | Zbl

[4] Beck, Matthias; Robins, Sinai Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, New York, 2015, xx+285 pages | DOI | MR | Zbl

[5] Benincasa, Paolo; Torres Bobadilla, William J. Physical representations for scattering amplitudes and the wavefunction of the universe, SciPost Phys., Volume 12 (2022) no. 6, Paper no. 192, 32 pages | DOI | MR

[6] Bruckamp, Justus; Goltermann, Lina; Juhnke, Martina; Landin, Erik; Solus, Liam Ehrhart theory of cosmological polytopes, 2024 | arXiv | Zbl

[7] De Loera, Jesús A.; Rambau, Jörg; Santos, Francisco Triangulations, Algorithms and Computation in Mathematics, 25, Springer-Verlag, Berlin, 2010, xiv+535 pages | DOI | MR | Zbl

[8] Galashin, Pavel; Lam, Thomas Parity duality for the amplituhedron, Compos. Math., Volume 156 (2020) no. 11, pp. 2207-2262 | DOI | MR | Zbl

[9] Herrmann, Enrico; Langer, Cameron; Trnka, Jaroslav; Zheng, Minshan Positive geometry, local triangulations, and the dual of the amplituhedron, J. High Energy Phys. (2021) no. 1, Paper no. 35, 99 pages | DOI | MR | Zbl

[10] Herzog, Jürgen; Hibi, Takayuki; Ohsugi, Hidefumi Binomial ideals, Graduate Texts in Mathematics, 279, Springer, Cham, 2018, xix+321 pages | DOI | MR | Zbl

[11] Higashitani, Akihiro; Jochemko, Katharina; Michałek, Mateusz Arithmetic aspects of symmetric edge polytopes, Mathematika, Volume 65 (2019) no. 3, pp. 763-784 | DOI | MR | Zbl

[12] Kojima, Ryota; Langer, Cameron Sign flip triangulations of the amplituhedron, J. High Energy Phys. (2020) no. 5, Paper no. 121, 33 pages | DOI | MR

[13] Kühne, Lukas; Monin, Leonid Faces of cosmological polytopes, Ann. Inst. Henri Poincaré D, Volume 12 (2025) no. 3, pp. 445-461 | DOI | MR | Zbl

[14] Lam, Thomas An invitation to positive geometries, Open problems in algebraic combinatorics (Proc. Sympos. Pure Math.), Volume 110, Amer. Math. Soc., Providence, RI, 2024, pp. 159-179 | MR

[15] Landin, Erik The cosmological polytope of the complete bipartite graph K 2,n , Masters thesis, KTH, Mathematics (Div.) (2023), 57 pages

[16] Matsui, Tetsushi; Higashitani, Akihiro; Nagazawa, Yuuki; Ohsugi, Hidefumi; Hibi, Takayuki Roots of Ehrhart polynomials arising from graphs, J. Algebraic Combin., Volume 34 (2011) no. 4, pp. 721-749 | DOI | MR | Zbl

[17] Mohammadi, Fatemeh; Monin, Leonid; Parisi, Matteo Triangulations and canonical forms of amplituhedra: a fiber-based approach beyond polytopes, Comm. Math. Phys., Volume 387 (2021) no. 2, pp. 927-972 | DOI | MR | Zbl

[18] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2025 http://oeis.org/a020522 (Entry A020522)

[19] Sturmfels, Bernd Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | DOI | MR | Zbl

Cited by Sources: