We know from [9] that if for some triple of partitions $(\lambda ,\mu ,\nu )$ of $n$ the Kronecker coefficient $\langle \chi ^\lambda \otimes \chi ^\mu ,\chi ^\nu \rangle $ is non-zero then the corresponding multiplicity $\langle {\mathcal{U}}^\lambda \otimes {\mathcal{U}}^\mu ,{\mathcal{U}}^\nu \rangle $ for the unipotent characters of $\mathrm{GL}_n(\mathbb{F}_q)$ is also non-zero. A conjecture of Saxl says that if $\mu $ is a staircase partition, then all irreducible characters of $S_{|\mu |}$ appear non-trivially in the tensor square $\chi ^\mu \otimes \chi ^\mu $. Therefore the Saxl conjecture implies its analogue for unipotent characters, i.e. all unipotent characters of $\mathrm{GL}_{|\mu |}(\mathbb{F}_q)$ appear non-trivially in the tensor square ${\mathcal{U}}^\mu \otimes {\mathcal{U}}^\mu $ when $\mu $ is a staircase partition. In this paper we prove the analogue of the Saxl conjecture for unipotent characters. In a second part we describe conjecturally the set of all partitions $\mu $ for which the tensor square ${\mathcal{U}}^\mu \otimes {\mathcal{U}}^\mu $ contains non-trivially all the unipotent characters of $\mathrm{GL}_{|\mu |}(\mathbb{F}_q)$.
Revised:
Accepted:
Published online:
Keywords: tensor product, unipotent character, Kronecker coefficient, symmetric function
Letellier, Emmanuel 1; Nam, GyeongHyeon 2

@article{ALCO_2025__8_4_1119_0, author = {Letellier, Emmanuel and Nam, GyeongHyeon}, title = {The {Saxl} conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$}, journal = {Algebraic Combinatorics}, pages = {1119--1140}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.434}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.434/} }
TY - JOUR AU - Letellier, Emmanuel AU - Nam, GyeongHyeon TI - The Saxl conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$ JO - Algebraic Combinatorics PY - 2025 SP - 1119 EP - 1140 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.434/ DO - 10.5802/alco.434 LA - en ID - ALCO_2025__8_4_1119_0 ER -
%0 Journal Article %A Letellier, Emmanuel %A Nam, GyeongHyeon %T The Saxl conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$ %J Algebraic Combinatorics %D 2025 %P 1119-1140 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.434/ %R 10.5802/alco.434 %G en %F ALCO_2025__8_4_1119_0
Letellier, Emmanuel; Nam, GyeongHyeon. The Saxl conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1119-1140. doi : 10.5802/alco.434. https://alco.centre-mersenne.org/articles/10.5802/alco.434/
[1] On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Volume 118 (2003) no. 2, pp. 339-352 | DOI | MR | Zbl
[2] Characters of the symmetric group https://www.jgibson.id.au/articles/characters/
[3] Arithmetic harmonic analysis on character and quiver varieties II, Adv. Math., Volume 234 (2013), pp. 85-128 | DOI | MR | Zbl
[4] Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 4, pp. 908-930 | DOI | MR | Zbl
[5] Some observations on products of characters of finite classical groups, Finite groups 2003, Walter de Gruyter, Berlin, 2004, pp. 195-207 | DOI | MR
[6] The Saxl conjecture and the dominance order, Discrete Math., Volume 338 (2015) no. 11, pp. 1970-1975 | DOI | MR | Zbl
[7] Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, xxii+400 pages | DOI | MR | Zbl
[8] Quiver varieties and the character ring of general linear groups over finite fields, J. Eur. Math. Soc. (JEMS), Volume 15 (2013) no. 4, pp. 1375-1455 | DOI | MR | Zbl
[9] Tensor products of unipotent characters of general linear groups over finite fields, Transform. Groups, Volume 18 (2013) no. 1, pp. 233-262 | DOI | MR | Zbl
[10] Notes on character sheaves, Mosc. Math. J., Volume 9 (2009) no. 1, p. 91-109, back matter | DOI | MR | Zbl
[11] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | DOI | MR | Zbl
[12] Generic decomposition of tensor products https://www.math.rwth-aachen.de/...
[13] The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups, Amer. J. Math., Volume 60 (1938) no. 1, pp. 44-65 | DOI | MR | Zbl
[14] A Generalization of Kac Polynomials and Tensor Product of Representations of , Transform. Groups (2024), pp. 1-36 | DOI
Cited by Sources: