The Saxl conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$
Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1119-1140.

We know from [9] that if for some triple of partitions $(\lambda ,\mu ,\nu )$ of $n$ the Kronecker coefficient $\langle \chi ^\lambda \otimes \chi ^\mu ,\chi ^\nu \rangle $ is non-zero then the corresponding multiplicity $\langle {\mathcal{U}}^\lambda \otimes {\mathcal{U}}^\mu ,{\mathcal{U}}^\nu \rangle $ for the unipotent characters of $\mathrm{GL}_n(\mathbb{F}_q)$ is also non-zero. A conjecture of Saxl says that if $\mu $ is a staircase partition, then all irreducible characters of $S_{|\mu |}$ appear non-trivially in the tensor square $\chi ^\mu \otimes \chi ^\mu $. Therefore the Saxl conjecture implies its analogue for unipotent characters, i.e. all unipotent characters of $\mathrm{GL}_{|\mu |}(\mathbb{F}_q)$ appear non-trivially in the tensor square ${\mathcal{U}}^\mu \otimes {\mathcal{U}}^\mu $ when $\mu $ is a staircase partition. In this paper we prove the analogue of the Saxl conjecture for unipotent characters. In a second part we describe conjecturally the set of all partitions $\mu $ for which the tensor square ${\mathcal{U}}^\mu \otimes {\mathcal{U}}^\mu $ contains non-trivially all the unipotent characters of $\mathrm{GL}_{|\mu |}(\mathbb{F}_q)$.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.434
Classification: 20C33, 20C30, 05E05
Keywords: tensor product, unipotent character, Kronecker coefficient, symmetric function

Letellier, Emmanuel 1; Nam, GyeongHyeon 2

1 Université Paris Cité IMJ-PRG CNRS 45 Rue des Saints-Pères Paris 75006 (France)
2 Ajou University Department of Mathematics 206 World cup-ro Suwon 16499 (Republic of Korea)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_4_1119_0,
     author = {Letellier, Emmanuel and Nam, GyeongHyeon},
     title = {The {Saxl} conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$},
     journal = {Algebraic Combinatorics},
     pages = {1119--1140},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {4},
     year = {2025},
     doi = {10.5802/alco.434},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.434/}
}
TY  - JOUR
AU  - Letellier, Emmanuel
AU  - Nam, GyeongHyeon
TI  - The Saxl conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1119
EP  - 1140
VL  - 8
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.434/
DO  - 10.5802/alco.434
LA  - en
ID  - ALCO_2025__8_4_1119_0
ER  - 
%0 Journal Article
%A Letellier, Emmanuel
%A Nam, GyeongHyeon
%T The Saxl conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$
%J Algebraic Combinatorics
%D 2025
%P 1119-1140
%V 8
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.434/
%R 10.5802/alco.434
%G en
%F ALCO_2025__8_4_1119_0
Letellier, Emmanuel; Nam, GyeongHyeon. The Saxl conjecture and the tensor square of unipotent characters of $\mathrm{GL}_n(q)$. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1119-1140. doi : 10.5802/alco.434. https://alco.centre-mersenne.org/articles/10.5802/alco.434/

[1] Crawley-Boevey, W. On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Volume 118 (2003) no. 2, pp. 339-352 | DOI | MR | Zbl

[2] Gibson, J. Characters of the symmetric group https://www.jgibson.id.au/articles/characters/

[3] Hausel, T.; Letellier, E.; Rodriguez-Villegas, F. Arithmetic harmonic analysis on character and quiver varieties II, Adv. Math., Volume 234 (2013), pp. 85-128 | DOI | MR | Zbl

[4] Heide, G.; Saxl, J.; Tiep, P. H.; Zalesski, A. E. Conjugacy action, induced representations and the Steinberg square for simple groups of Lie type, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 4, pp. 908-930 | DOI | MR | Zbl

[5] Hiss, G.; Lübeck, F. Some observations on products of characters of finite classical groups, Finite groups 2003, Walter de Gruyter, Berlin, 2004, pp. 195-207 | DOI | MR

[6] Ikenmeyer, C. The Saxl conjecture and the dominance order, Discrete Math., Volume 338 (2015) no. 11, pp. 1970-1975 | DOI | MR | Zbl

[7] Kac, V. G. Infinite-dimensional Lie algebras, Cambridge University Press, Cambridge, 1990, xxii+400 pages | DOI | MR | Zbl

[8] Letellier, E. Quiver varieties and the character ring of general linear groups over finite fields, J. Eur. Math. Soc. (JEMS), Volume 15 (2013) no. 4, pp. 1375-1455 | DOI | MR | Zbl

[9] Letellier, E. Tensor products of unipotent characters of general linear groups over finite fields, Transform. Groups, Volume 18 (2013) no. 1, pp. 233-262 | DOI | MR | Zbl

[10] Lusztig, G. Notes on character sheaves, Mosc. Math. J., Volume 9 (2009) no. 1, p. 91-109, back matter | DOI | MR | Zbl

[11] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | DOI | MR | Zbl

[12] Mattig, D. Generic decomposition of tensor products https://www.math.rwth-aachen.de/...

[13] Murnaghan, F. D. The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups, Amer. J. Math., Volume 60 (1938) no. 1, pp. 44-65 | DOI | MR | Zbl

[14] Scognamiglio, T. A Generalization of Kac Polynomials and Tensor Product of Representations of GL n (𝔽 q ), Transform. Groups (2024), pp. 1-36 | DOI

Cited by Sources: