Transition matrices and Pieri-type rules for polysymmetric functions
Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1085-1117.

Asvin G and Andrew O’Desky recently introduced the graded algebra $\textsf {P}\mathsf {\Lambda }$ of polysymmetric functions as a generalization of the algebra $\Lambda $ of symmetric functions. This article develops combinatorial formulas for some multiplication rules and transition matrix entries for $\textsf {P}\mathsf {\Lambda }$ that are analogous to well-known classical formulas for $\Lambda $. In more detail, we consider pure tensor bases $\lbrace s^{\otimes }_{\tau }\rbrace $, $\lbrace p^{\otimes }_{\tau }\rbrace $, and $\lbrace m^{\otimes }_{\tau }\rbrace $ for $\textsf {P}\mathsf {\Lambda }$ that arise as tensor products of the classical Schur basis, power-sum basis, and monomial basis for $\Lambda $. We find expansions in these bases of the non-pure bases $\lbrace P_{\delta }\rbrace $, $\lbrace H_{\delta }\rbrace $, $\lbrace E^+_{\delta }\rbrace $, and $\lbrace E_{\delta }\rbrace $ studied by Asvin G and O’Desky. The answers involve tableau-like structures generalizing semistandard tableaux, rim-hook tableaux, and the brick tabloids of Eğecioğlu and Remmel. These objects arise by iteration of new Pieri-type rules that give expansions of products such as $s^{\otimes }_{\sigma }H_{\delta }$, $p^{\otimes }_{\sigma }E_{\delta }$, etc.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.436
Classification: 05E05, 05A17
Keywords: symmetric functions, polysymmetric functions, transition matrices, plethysm, Pieri rules, Murnaghan–Nakayama rule, rim-hook tableaux, brick tabloids, types

Khanna, Aditya 1; Loehr, Nicholas A. 1

1 Virginia Tech Dept. of Mathematics 225 Stanger St. 460 McBryde Hall Blacksburg VA 24061-0123 (USA)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{ALCO_2025__8_4_1085_0,
     author = {Khanna, Aditya and Loehr, Nicholas A.},
     title = {Transition matrices and {Pieri-type} rules for polysymmetric functions},
     journal = {Algebraic Combinatorics},
     pages = {1085--1117},
     publisher = {The Combinatorics Consortium},
     volume = {8},
     number = {4},
     year = {2025},
     doi = {10.5802/alco.436},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.436/}
}
TY  - JOUR
AU  - Khanna, Aditya
AU  - Loehr, Nicholas A.
TI  - Transition matrices and Pieri-type rules for polysymmetric functions
JO  - Algebraic Combinatorics
PY  - 2025
SP  - 1085
EP  - 1117
VL  - 8
IS  - 4
PB  - The Combinatorics Consortium
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.436/
DO  - 10.5802/alco.436
LA  - en
ID  - ALCO_2025__8_4_1085_0
ER  - 
%0 Journal Article
%A Khanna, Aditya
%A Loehr, Nicholas A.
%T Transition matrices and Pieri-type rules for polysymmetric functions
%J Algebraic Combinatorics
%D 2025
%P 1085-1117
%V 8
%N 4
%I The Combinatorics Consortium
%U https://alco.centre-mersenne.org/articles/10.5802/alco.436/
%R 10.5802/alco.436
%G en
%F ALCO_2025__8_4_1085_0
Khanna, Aditya; Loehr, Nicholas A. Transition matrices and Pieri-type rules for polysymmetric functions. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1085-1117. doi : 10.5802/alco.436. https://alco.centre-mersenne.org/articles/10.5802/alco.436/

[1] Beck, Desiree A.; Remmel, Jeffrey B.; Whitehead, Tamsen The combinatorics of transition matrices between the bases of the symmetric functions and the B n analogues, Discrete Math., Volume 153 (1996) no. 1-3, pp. 3-27 Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993) | DOI | MR | Zbl

[2] Désarménien, J.; Leclerc, B.; Thibon, J.-Y. Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory, Sém. Lothar. Combin., Volume 32 (1994), Paper no. B32c, 38 pages | MR | Zbl

[3] Eğecioğlu, Ömer; Remmel, Jeffrey B. Brick tabloids and the connection matrices between bases of symmetric functions, Discrete Appl. Math., Volume 34 (1991) no. 1-3, pp. 107-120 Combinatorics and theoretical computer science (Washington, DC, 1989) | DOI | MR | Zbl

[4] G, Asvin; O’Desky, Andrew Polysymmetric functions and motivic measures of configuration spaces, 2024 | arXiv

[5] Loehr, Nicholas A. Combinatorics, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2018, xxiv+618 pages | MR | Zbl

[6] Loehr, Nicholas A.; Remmel, Jeffrey B. A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl

[7] Macdonald, I. G. Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl

[8] Orellana, Rosa; Saliola, Franco; Schilling, Anne; Zabrocki, Mike Plethysm and the algebra of uniform block permutations, Algebr. Comb., Volume 5 (2022) no. 5, pp. 1165-1203 | DOI | Numdam | MR | Zbl

[9] Stanley, Richard P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR

[10] Turek, Pavel Proof of the Plethystic Murnaghan–Nakayama Rule Using Loehr’s Labelled Abacus, Ann. Comb., Volume 29 (2025) no. 1, pp. 183-195 | DOI | MR | Zbl

[11] Wildon, Mark A combinatorial proof of a plethystic Murnaghan-Nakayama rule, SIAM J. Discrete Math., Volume 30 (2016) no. 3, pp. 1526-1533 | DOI | MR | Zbl

Cited by Sources: