Asvin G and Andrew O’Desky recently introduced the graded algebra $\textsf {P}\mathsf {\Lambda }$ of polysymmetric functions as a generalization of the algebra $\Lambda $ of symmetric functions. This article develops combinatorial formulas for some multiplication rules and transition matrix entries for $\textsf {P}\mathsf {\Lambda }$ that are analogous to well-known classical formulas for $\Lambda $. In more detail, we consider pure tensor bases $\lbrace s^{\otimes }_{\tau }\rbrace $, $\lbrace p^{\otimes }_{\tau }\rbrace $, and $\lbrace m^{\otimes }_{\tau }\rbrace $ for $\textsf {P}\mathsf {\Lambda }$ that arise as tensor products of the classical Schur basis, power-sum basis, and monomial basis for $\Lambda $. We find expansions in these bases of the non-pure bases $\lbrace P_{\delta }\rbrace $, $\lbrace H_{\delta }\rbrace $, $\lbrace E^+_{\delta }\rbrace $, and $\lbrace E_{\delta }\rbrace $ studied by Asvin G and O’Desky. The answers involve tableau-like structures generalizing semistandard tableaux, rim-hook tableaux, and the brick tabloids of Eğecioğlu and Remmel. These objects arise by iteration of new Pieri-type rules that give expansions of products such as $s^{\otimes }_{\sigma }H_{\delta }$, $p^{\otimes }_{\sigma }E_{\delta }$, etc.
Revised:
Accepted:
Published online:
Keywords: symmetric functions, polysymmetric functions, transition matrices, plethysm, Pieri rules, Murnaghan–Nakayama rule, rim-hook tableaux, brick tabloids, types
Khanna, Aditya 1; Loehr, Nicholas A. 1

@article{ALCO_2025__8_4_1085_0, author = {Khanna, Aditya and Loehr, Nicholas A.}, title = {Transition matrices and {Pieri-type} rules for polysymmetric functions}, journal = {Algebraic Combinatorics}, pages = {1085--1117}, publisher = {The Combinatorics Consortium}, volume = {8}, number = {4}, year = {2025}, doi = {10.5802/alco.436}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.436/} }
TY - JOUR AU - Khanna, Aditya AU - Loehr, Nicholas A. TI - Transition matrices and Pieri-type rules for polysymmetric functions JO - Algebraic Combinatorics PY - 2025 SP - 1085 EP - 1117 VL - 8 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.436/ DO - 10.5802/alco.436 LA - en ID - ALCO_2025__8_4_1085_0 ER -
%0 Journal Article %A Khanna, Aditya %A Loehr, Nicholas A. %T Transition matrices and Pieri-type rules for polysymmetric functions %J Algebraic Combinatorics %D 2025 %P 1085-1117 %V 8 %N 4 %I The Combinatorics Consortium %U https://alco.centre-mersenne.org/articles/10.5802/alco.436/ %R 10.5802/alco.436 %G en %F ALCO_2025__8_4_1085_0
Khanna, Aditya; Loehr, Nicholas A. Transition matrices and Pieri-type rules for polysymmetric functions. Algebraic Combinatorics, Volume 8 (2025) no. 4, pp. 1085-1117. doi : 10.5802/alco.436. https://alco.centre-mersenne.org/articles/10.5802/alco.436/
[1] The combinatorics of transition matrices between the bases of the symmetric functions and the analogues, Discrete Math., Volume 153 (1996) no. 1-3, pp. 3-27 Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993) | DOI | MR | Zbl
[2] Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory, Sém. Lothar. Combin., Volume 32 (1994), Paper no. B32c, 38 pages | MR | Zbl
[3] Brick tabloids and the connection matrices between bases of symmetric functions, Discrete Appl. Math., Volume 34 (1991) no. 1-3, pp. 107-120 Combinatorics and theoretical computer science (Washington, DC, 1989) | DOI | MR | Zbl
[4] Polysymmetric functions and motivic measures of configuration spaces, 2024 | arXiv
[5] Combinatorics, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2018, xxiv+618 pages | MR | Zbl
[6] A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl
[7] Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, xii+475 pages | MR | Zbl
[8] Plethysm and the algebra of uniform block permutations, Algebr. Comb., Volume 5 (2022) no. 5, pp. 1165-1203 | DOI | Numdam | MR | Zbl
[9] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR
[10] Proof of the Plethystic Murnaghan–Nakayama Rule Using Loehr’s Labelled Abacus, Ann. Comb., Volume 29 (2025) no. 1, pp. 183-195 | DOI | MR | Zbl
[11] A combinatorial proof of a plethystic Murnaghan-Nakayama rule, SIAM J. Discrete Math., Volume 30 (2016) no. 3, pp. 1526-1533 | DOI | MR | Zbl
Cited by Sources: