Following recent work of Brenti and Carnevale, we investigate a sign-twisted Poincaré series for finite Weyl groups that tracks “odd inversions”; i.e. the number of odd-height positive roots transformed into negative roots by each member of . We prove that the series is divisible by the corresponding series for any parabolic subgroup , and provide sufficient conditions for when the quotient of the two series equals the restriction of the first series to coset representatives for . We also show that the series has an explicit factorization involving the degrees of the free generators of the polynomial invariants of a canonically associated reflection group.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.62
Mots-clés : Weyl group, root system, Poincaré series, inversion
Stembridge, John R. 1
@article{ALCO_2019__2_4_621_0, author = {Stembridge, John R.}, title = {Sign-twisted {Poincar\'e} series and odd inversions in {Weyl} groups}, journal = {Algebraic Combinatorics}, pages = {621--644}, publisher = {MathOA foundation}, volume = {2}, number = {4}, year = {2019}, doi = {10.5802/alco.62}, zbl = {1417.05246}, mrnumber = {3997515}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.62/} }
TY - JOUR AU - Stembridge, John R. TI - Sign-twisted Poincaré series and odd inversions in Weyl groups JO - Algebraic Combinatorics PY - 2019 SP - 621 EP - 644 VL - 2 IS - 4 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.62/ DO - 10.5802/alco.62 LA - en ID - ALCO_2019__2_4_621_0 ER -
Stembridge, John R. Sign-twisted Poincaré series and odd inversions in Weyl groups. Algebraic Combinatorics, Volume 2 (2019) no. 4, pp. 621-644. doi : 10.5802/alco.62. https://alco.centre-mersenne.org/articles/10.5802/alco.62/
[1] Groupes et Algèbres de Lie, Chp. IV–VI, Masson, Paris, 1981 | Zbl
[2] Odd length for even hyperoctahedral groups and signed generating functions, Discrete Math., Volume 340 (2017) no. 12, pp. 2822-2833 | DOI | MR | Zbl
[3] Odd length in Weyl groups (2017) (https://arxiv.org/abs/1709.03320) | Zbl
[4] Proof of a conjecture of Klopsch–Voll on Weyl groups of type , Trans. Amer. Math. Soc., Volume 369 (2017), pp. 7531-7547 | DOI | MR | Zbl
[5] Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990 | DOI | Zbl
[6] Igusa-type functions associated to finite formed spaces and their functional equations, Trans. Amer. Math. Soc., Volume 361 (2009) no. 8, pp. 4405-4436 | DOI | MR | Zbl
[7] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, Boston, MA, 1996 | MR | Zbl
[8] Proof of Stasinski and Voll’s hyperoctahedral group conjecture, Australas. J. Combin., Volume 71 (2018) no. 2, pp. 196-240 | MR | Zbl
[9] The Poincaré series of a Coxeter group, Math. Ann., Volume 199 (1972) no. 2, pp. 161-174 | DOI | MR | Zbl
[10] A new statistic on the hyperoctahedral groups, Electron. J. Combin., Volume 20 (2013) no. 3, Paper no. P50, 23 pages | DOI | MR | Zbl
[11] Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type , Amer. J. Math., Volume 136 (2014) no. 2, pp. 501-550 | DOI | MR | Zbl
Cited by Sources: