Telescopic groups and symmetries of combinatorial maps
Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 483-508.

In the present paper, we show that many combinatorial and topological objects, such as maps, hypermaps, three-dimensional pavings, constellations and branched coverings of the two-sphere admit any given finite automorphism group. This enhances the already known results by Frucht, Cori–Machì, Širáň–Škoviera, and other authors. We also provide a more universal technique for showing that “any finite automorphism group is possible”, that is applicable to wider classes or, in contrast, to more particular sub-classes of said combinatorial and geometric objects. Finally, we show that any given finite automorphism group can be realised by sufficiently many non-isomorphic such entities (super-exponentially many with respect to a certain combinatorial complexity measure).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.101
Classification: 20E07,  52C20,  52C22,  05C30
Keywords: automorphism, free product, free group, hypermap, ribbon graph, symmetry
Bottinelli, Rémi 1; Grave de Peralta, Laura 1; Kolpakov, Alexander 1

1 Institut de Mathématiques Université de Neuchâtel Rue Emile-Argand 11 CH-2000 Neuchâtel, Switzerland
@article{ALCO_2020__3_2_483_0,
     author = {Bottinelli, R\'emi and Grave de Peralta, Laura and Kolpakov, Alexander},
     title = {Telescopic groups and symmetries of combinatorial maps},
     journal = {Algebraic Combinatorics},
     pages = {483--508},
     publisher = {MathOA foundation},
     volume = {3},
     number = {2},
     year = {2020},
     doi = {10.5802/alco.101},
     language = {en},
     url = {https://alco.centre-mersenne.org/articles/10.5802/alco.101/}
}
TY  - JOUR
TI  - Telescopic groups and symmetries of combinatorial maps
JO  - Algebraic Combinatorics
PY  - 2020
DA  - 2020///
SP  - 483
EP  - 508
VL  - 3
IS  - 2
PB  - MathOA foundation
UR  - https://alco.centre-mersenne.org/articles/10.5802/alco.101/
UR  - https://doi.org/10.5802/alco.101
DO  - 10.5802/alco.101
LA  - en
ID  - ALCO_2020__3_2_483_0
ER  - 
%0 Journal Article
%T Telescopic groups and symmetries of combinatorial maps
%J Algebraic Combinatorics
%D 2020
%P 483-508
%V 3
%N 2
%I MathOA foundation
%U https://doi.org/10.5802/alco.101
%R 10.5802/alco.101
%G en
%F ALCO_2020__3_2_483_0
Bottinelli, Rémi; Grave de Peralta, Laura; Kolpakov, Alexander. Telescopic groups and symmetries of combinatorial maps. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 483-508. doi : 10.5802/alco.101. https://alco.centre-mersenne.org/articles/10.5802/alco.101/

[1] Arquès, Didier; Koch, Patrice Pavages tridimensionels, Bigre + Globule, Volume 61-62 (1989), pp. 5-15

[2] Bollobás, Béla The asymptotic number of unlabelled regular graphs, J. Lond. Math. Soc., Volume 26 (1982), pp. 201-206 | Article | MR: 675164 | Zbl: 0504.05051

[3] Breda d’Azevedo, Antonio; Mednykh, Alexander; Nedela, Roman Enumeration of maps regardless of genus: geometric approach, Discrete Math., Volume 310 (2010) no. 6-7, pp. 1184-1203 | Article | MR: 2579852 | Zbl: 1236.05109

[4] Ciobanu, Laura; Kolpakov, Alexander Three-dimensional maps and subgroup growth (2017) (https://arxiv.org/abs/1712.01418)

[5] Ciobanu, Laura; Kolpakov, Alexander Free subgroups of free products and combinatorial hypermaps, Discrete Math., Volume 342 (2019) no. 5, pp. 1415-1433 | Article | MR: 3911640 | Zbl: 1407.05127

[6] Cori, Robert Un code pour les graphes planaires et ses applications., Astérisque, 27, Société Mathématique de France (SMF), Paris, 1975, pp. 1-169 | Numdam | Zbl: 0313.05115

[7] Cori, Robert; Machì, Antonio Construction of maps with prescribed automorphism group, Theor. Comput. Sci., Volume 21 (1982) no. 1, pp. 91-98 | Article | MR: 672104 | Zbl: 0495.05050

[8] Cori, Robert; Machì, Antonio Maps, hypermaps and their automorphisms: a survey, I, II, III, Expo. Math., Volume 10 (1992), p. 403-427, 429–447, 449–467 | MR: 1190182 | Zbl: 0772.05039

[9] Drmota, Michael; Nedela, Roman Asymptotic enumeration of reversible maps regardless of genus, Ars Math. Contemp., Volume 5 (2012), pp. 77-97 | Article | MR: 2869453 | Zbl: 1247.05109

[10] Feĭnberg, Valeriĭ Zalmanovich Automorphism groups of trees, Dokl. Akad. Nauk BSSR, Volume 13 (1969), pp. 1065-1067 | MR: 282885

[11] Frucht, Roberto Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compos. Math., Volume 6 (1938), pp. 239-250 | MR: 1557026 | Zbl: 64.0596.02

[12] Jones, Gareth A. Realisation of groups as automorphism groups in permutational categories (2018) (https://arxiv.org/abs/1807.00547)

[13] Jones, Gareth A.; Singerman, David Theory of maps on orientable surfaces, Proc. Lond. Math. Soc., Volume S3-37 (1978) no. 2, pp. 273-307 | Article | MR: 505721 | Zbl: 0391.05024

[14] Kapovich, Ilya; Myasnikov, Alexei Stallings foldings and subgroups of free groups, J. Algebra, Volume 248 (2002) no. 2, pp. 608-668 | Article | MR: 1882114 | Zbl: 1001.20015

[15] Lando, Sergei K.; Zvonkin, Alexander K. Graphs on surfaces and their applications, Encycl. Math. Sci., 141, Springer, 2004 | MR: 2036721 | Zbl: 1040.05001

[16] Mednykh, Alexander; Nedela, Roman Enumeration of unrooted maps of a given genus, J. Comb. Theory, Ser. B, Volume 96 (2006) no. 5, pp. 706-729 | Article | MR: 2236507 | Zbl: 1102.05033

[17] Mednykh, Alexander; Nedela, Roman Enumeration of unrooted hypermaps of a given genus, Discrete Math., Volume 310 (2010) no. 3, pp. 518-526 | Article | MR: 2564806 | Zbl: 1185.05082

[18] Serre, Jean-Pierre Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, x+142 pages | Zbl: 1013.20001

[19] Širáň, Josef; Škoviera, Martin Orientable and non-orientable maps with given automorphism groups, Australas. J. Comb., Volume 7 (1993), pp. 47-53 | Zbl: 0777.05054

[20] Spehner, Jean-Claude Merging in maps and in pavings, Theor. Comput. Sci., Volume 86 (1991) no. 2, pp. 205-232 | Article | MR: 1122788 | Zbl: 0733.68093

[21] Stallings, John R. Topology of finite graphs, Invent. Math., Volume 71 (1983) no. 3, pp. 551-565 | Article | MR: 695906 | Zbl: 0521.20013

[22] Stothers, W. Wilson Free subgroups of the free product of cyclic groups, Math. Comput., Volume 32 (1978) no. 144, pp. 1274-1280 | Article | MR: 502015 | Zbl: 0395.20013

[23] Tutte, William T. What is a map?, New Directions in Graph Theory (Harary, F., ed.), Academic Press, New York, 1973, pp. 309-325 | Zbl: 0258.05105

[24] Welsch, Cora Subgroup graph methods for presentations of finitely generated groups and the contractibility of associated simplicial complexes, J. Algebra, Volume 486 (2017), pp. 119-156 | Article | MR: 3666210 | Zbl: 1400.20023

Cited by Sources: