We study the combinatorial properties of vexillary signed permutations, which are signed analogues of the vexillary permutations first considered by Lascoux and Schützenberger. We give several equivalent characterizations of vexillary signed permutations, including descriptions in terms of essential sets and pattern avoidance, and we relate them to the vexillary elements introduced by Billey and Lam.
Revised: 2020-03-25
Accepted: 2020-04-05
Published online: 2020-10-12
Classification: 05E15, 05A05, 14M15
Keywords: Signed permutation, vexillary permutation, degeneracy locus, essential set.
@article{ALCO_2020__3_5_1041_0, author = {Anderson, David and Fulton, William}, title = {Vexillary signed permutations revisited}, journal = {Algebraic Combinatorics}, pages = {1041--1057}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.122}, language = {en}, url = {alco.centre-mersenne.org/item/ALCO_2020__3_5_1041_0/} }
Anderson, David; Fulton, William. Vexillary signed permutations revisited. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1041-1057. doi : 10.5802/alco.122. https://alco.centre-mersenne.org/item/ALCO_2020__3_5_1041_0/
[1] Diagrams and essential sets for signed permutations, Electron. J. Combin., Volume 25 (2018) no. 3, 3.46, 23 pages | MR 3853898 | Zbl 1412.14033
[2] Degeneracy loci, Pfaffians, and vexillary signed permutations in types B, C, and D (2012) (https://arxiv.org/abs/1210.2066)
[3] Chern class formulas for classical-type degeneracy loci, Compos. Math., Volume 154 (2018) no. 8, pp. 1746-1774 | Article | MR 3830551 | Zbl 1412.14034
[4] Transition equations for isotropic flag manifolds, Discrete Math., Volume 193 (1998) no. 1-3, pp. 69-84 (Selected papers in honor of Adriano Garsia (Taormina, 1994)) | Article | MR 1661363 | Zbl 1061.05510
[5] Schubert polynomials for the classical groups, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 443-482 | Article | MR 1290232 | Zbl 0832.05098
[6] Vexillary elements in the hyperoctahedral group, J. Algebraic Combin., Volume 8 (1998) no. 2, pp. 139-152 | Article | MR 1648468 | Zbl 0921.05060
[7] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, Volume 231, Springer, New York, 2005, xiv+363 pages | MR 2133266 | Zbl 1110.05001
[8] Enumerating -invariant permutations with no long decreasing subsequences, Ann. Comb., Volume 14 (2010) no. 1, pp. 85-101 | Article | MR 2601802 | Zbl 1233.05010
[9] Combinatorics of Fulton’s essential set, Duke Math. J., Volume 85 (1996) no. 1, pp. 61-76 | Article | MR 1412437 | Zbl 0859.05003
[10] Combinatorial -analogues of Schubert polynomials, Trans. Amer. Math. Soc., Volume 348 (1996) no. 9, pp. 3591-3620 | Article | MR 1340174 | Zbl 0871.05060
[11] Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., Volume 65 (1992) no. 3, pp. 381-420 | Article | MR 1154177 | Zbl 0788.14044
[12] Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, Volume 1689, Springer-Verlag, Berlin, 1998, xii+148 pages (Appendix J by the authors in collaboration with I. Ciocan-Fontanine) | Article | MR 1639468 | Zbl 0913.14016
[13] Double Schubert polynomials for the classical groups, Adv. Math., Volume 226 (2011) no. 1, pp. 840-886 | Article | MR 2735777 | Zbl 1291.05222
[14] On Lagrange and symmetric degeneracy loci (2000) (Isaac Newton Institute for Mathematical Sciences Preprint Series)
[15] Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), Paper No. 034, 56 pages | Article | MR 3478964 | Zbl 1334.05176
[16] Theta-vexillary signed permutations, Electron. J. Combin., Volume 25 (2018) no. 4, Paper 4.53, 30 pages | MR 3907784 | Zbl 1409.05012
[17] Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR 660739 | Zbl 0495.14031
[18] Schubert polynomials and the Littlewood–Richardson rule, Lett. Math. Phys., Volume 10 (1985) no. 2-3, pp. 111-124 | Article | MR 815233 | Zbl 0586.20007
[19] Generating trees and the Catalan and Schröder numbers, Discrete Math., Volume 146 (1995) no. 1-3, pp. 247-262 | Article | MR 1360119 | Zbl 0841.05002