Vexillary signed permutations revisited
Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1041-1057.

We study the combinatorial properties of vexillary signed permutations, which are signed analogues of the vexillary permutations first considered by Lascoux and Schützenberger. We give several equivalent characterizations of vexillary signed permutations, including descriptions in terms of essential sets and pattern avoidance, and we relate them to the vexillary elements introduced by Billey and Lam.

Received: 2018-06-04
Revised: 2020-03-25
Accepted: 2020-04-05
Published online: 2020-10-12
DOI: https://doi.org/10.5802/alco.122
Classification: 05E15,  05A05,  14M15
Keywords: Signed permutation, vexillary permutation, degeneracy locus, essential set.
@article{ALCO_2020__3_5_1041_0,
     author = {Anderson, David and Fulton, William},
     title = {Vexillary signed permutations revisited},
     journal = {Algebraic Combinatorics},
     pages = {1041--1057},
     publisher = {MathOA foundation},
     volume = {3},
     number = {5},
     year = {2020},
     doi = {10.5802/alco.122},
     language = {en},
     url = {alco.centre-mersenne.org/item/ALCO_2020__3_5_1041_0/}
}
Anderson, David; Fulton, William. Vexillary signed permutations revisited. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1041-1057. doi : 10.5802/alco.122. https://alco.centre-mersenne.org/item/ALCO_2020__3_5_1041_0/

[1] Anderson, David Diagrams and essential sets for signed permutations, Electron. J. Combin., Volume 25 (2018) no. 3, 3.46, 23 pages | MR 3853898 | Zbl 1412.14033

[2] Anderson, David; Fulton, William Degeneracy loci, Pfaffians, and vexillary signed permutations in types B, C, and D (2012) (https://arxiv.org/abs/1210.2066)

[3] Anderson, David; Fulton, William Chern class formulas for classical-type degeneracy loci, Compos. Math., Volume 154 (2018) no. 8, pp. 1746-1774 | Article | MR 3830551 | Zbl 1412.14034

[4] Billey, Sara Transition equations for isotropic flag manifolds, Discrete Math., Volume 193 (1998) no. 1-3, pp. 69-84 (Selected papers in honor of Adriano Garsia (Taormina, 1994)) | Article | MR 1661363 | Zbl 1061.05510

[5] Billey, Sara; Haiman, Mark Schubert polynomials for the classical groups, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 443-482 | Article | MR 1290232 | Zbl 0832.05098

[6] Billey, Sara; Lam, Tao Kai Vexillary elements in the hyperoctahedral group, J. Algebraic Combin., Volume 8 (1998) no. 2, pp. 139-152 | Article | MR 1648468 | Zbl 0921.05060

[7] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter groups, Graduate Texts in Mathematics, Volume 231, Springer, New York, 2005, xiv+363 pages | MR 2133266 | Zbl 1110.05001

[8] Egge, Eric S. Enumerating rc-invariant permutations with no long decreasing subsequences, Ann. Comb., Volume 14 (2010) no. 1, pp. 85-101 | Article | MR 2601802 | Zbl 1233.05010

[9] Eriksson, Kimmo; Linusson, Svante Combinatorics of Fulton’s essential set, Duke Math. J., Volume 85 (1996) no. 1, pp. 61-76 | Article | MR 1412437 | Zbl 0859.05003

[10] Fomin, Sergey; Kirillov, Anatol N. Combinatorial B n -analogues of Schubert polynomials, Trans. Amer. Math. Soc., Volume 348 (1996) no. 9, pp. 3591-3620 | Article | MR 1340174 | Zbl 0871.05060

[11] Fulton, William Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., Volume 65 (1992) no. 3, pp. 381-420 | Article | MR 1154177 | Zbl 0788.14044

[12] Fulton, William; Pragacz, Piotr Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, Volume 1689, Springer-Verlag, Berlin, 1998, xii+148 pages (Appendix J by the authors in collaboration with I. Ciocan-Fontanine) | Article | MR 1639468 | Zbl 0913.14016

[13] Ikeda, Takeshi; Mihalcea, Leonardo C.; Naruse, Hiroshi Double Schubert polynomials for the classical groups, Adv. Math., Volume 226 (2011) no. 1, pp. 840-886 | Article | MR 2735777 | Zbl 1291.05222

[14] Kazarian, Maxim On Lagrange and symmetric degeneracy loci (2000) (Isaac Newton Institute for Mathematical Sciences Preprint Series)

[15] Kirillov, Anatol N. Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), Paper No. 034, 56 pages | Article | MR 3478964 | Zbl 1334.05176

[16] Lambert, Jordan Theta-vexillary signed permutations, Electron. J. Combin., Volume 25 (2018) no. 4, Paper 4.53, 30 pages | MR 3907784 | Zbl 1409.05012

[17] Lascoux, Alain; Schützenberger, Marcel-Paul Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR 660739 | Zbl 0495.14031

[18] Lascoux, Alain; Schützenberger, Marcel-Paul Schubert polynomials and the Littlewood–Richardson rule, Lett. Math. Phys., Volume 10 (1985) no. 2-3, pp. 111-124 | Article | MR 815233 | Zbl 0586.20007

[19] West, Julian Generating trees and the Catalan and Schröder numbers, Discrete Math., Volume 146 (1995) no. 1-3, pp. 247-262 | Article | MR 1360119 | Zbl 0841.05002