We introduce semi-infinite Young tableaux, and show that these tableaux give a combinatorial model for the crystal basis of a level-zero extremal weight module over the quantized universal enveloping algebra of untwisted affine type . The definition and characterization of these tableaux are based on standard monomial theory for semi-infinite Lakshmibai–Seshadri paths and a tableau criterion for the semi-infinite Bruhat order on affine Weyl groups of type , which are also proved in this paper.
Revised: 2020-05-29
Accepted: 2020-06-01
Published online: 2020-10-12
Keywords: Semi-infinite Young tableau, semi-infinite Lakshmibai–Seshadri path, semi-infinite Bruhat order, affine Weyl group, quantum affine algebra, extremal weight module, crystal basis.
@article{ALCO_2020__3_5_1141_0, author = {Ishii, Motohiro}, title = {Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai--Seshadri paths}, journal = {Algebraic Combinatorics}, pages = {1141--1163}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.130}, language = {en}, url = {alco.centre-mersenne.org/item/ALCO_2020__3_5_1141_0/} }
Ishii, Motohiro. Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths. Algebraic Combinatorics, Volume 3 (2020) no. 5, pp. 1141-1163. doi : 10.5802/alco.130. https://alco.centre-mersenne.org/item/ALCO_2020__3_5_1141_0/
[1] Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci., Volume 33 (1997) no. 5, pp. 839-867 | Article | MR 1607008 | Zbl 0915.17011
[2] Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J., Volume 123 (2004) no. 2, pp. 335-402 | MR 2066942 | Zbl 1062.17006
[3] Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Volume 231, Springer, New York, 2005 | MR 2133266 | Zbl 1110.05001
[4] Young Tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, Volume 35, Cambridge University Press, Cambridge, 1997 | MR 1464693 | Zbl 0878.14034
[5] Path model for representations of generalized Kac–Moody algebras, J. Algebra, Volume 379 (2013), pp. 277-300 | Article | MR 3019257 | Zbl 1303.17018
[6] Semi-infinite Lakshmibai–Seshadri path model for level-zero extremal weight modules over quantum affine algebras, Adv. Math., Volume 290 (2016), pp. 967-1009 | Article | MR 3451944 | Zbl 1387.17028
[7] Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Volume 29, Springer-Verlag, Berlin, 1995 | Article | MR 1315966 | Zbl 0808.17004
[8] A Littelmann path model for crystals of generalized Kac–Moody algebras, Adv. Math., Volume 221 (2009) no. 6, pp. 2019-2058 | Article | MR 2522835 | Zbl 1194.17006
[9] Infinite Dimensional Lie Algebras, Results in Mathematics and Related Areas (3), Cambridge University Press, Cambridge, 1990 (3rd edition) | Article | Zbl 0716.17022
[10] Perfect crystals of quantum affine Lie algebras, Duke Math. J., Volume 68 (1992) no. 3, pp. 499-607 | Article | MR 1194953 | Zbl 0774.17017
[11] Crystal bases of modified quantized enveloping algebra, Duke Math. J., Volume 73 (1994) no. 2, pp. 383-413 | Article | MR 1262212 | Zbl 0794.17009
[12] On crystal bases, Representations of groups (Banff, AB, 1994) (CMS Conf. Proc.) Volume 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155-197 | MR 1357199 | Zbl 0851.17014
[13] Similarity of crystal bases, Lie algebras and their representations (Seoul, 1995) (Contemp. Math.) Volume 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177-186 | Article | MR 1395599 | Zbl 0874.17028
[14] On level-zero representations of quantized affine algebras, Duke Math. J., Volume 112 (2002) no. 1, pp. 117-175 | Article | MR 1890649 | Zbl 1033.17017
[15] Crystal graphs for representations of the -analogue of classical Lie algebras, J. Algebra, Volume 165 (1994) no. 2, pp. 295-345 | Article | MR 1273277 | Zbl 0808.17005
[16] Equivariant -theory of semi-infinite flag manifolds and Pieri–Chevalley formula (2017) (https://arxiv.org/abs/1702.02408)
[17] Crystal graphs and the combinatorics of Young tableaux, Handbook of Algebra, Volume 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 473-504 | Article | MR 2553662 | Zbl 1221.17017
[18] Quantum cohomology of and homology of affine Grassmannian, Acta Math., Volume 204 (2010) no. 1, pp. 49-90 | Article | MR 2600433 | Zbl 1216.14052
[19] A uniform model for Kirillov–Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph, Int. Math. Res. Not. IMRN (2015) no. 7, pp. 1848-1901 | Article | MR 3335235 | Zbl 1394.05143
[20] Quantum Lakshmibai–Seshadri paths and root operators, Schubert calculus—Osaka 2012 (Adv. Stud. Pure Math.) Volume 71, Math. Soc. Japan, Tokyo, 2016, pp. 267-294 | Article | MR 3644827 | Zbl 1418.17036
[21] A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras, Invent. Math., Volume 116 (1994) no. 1-3, pp. 329-346 | Article | MR 1253196 | Zbl 0805.17019
[22] Paths and root operators in representation theory, Ann. of Math. (2), Volume 142 (1995) no. 3, pp. 499-525 | Article | MR 1356780 | Zbl 0858.17023
[23] A plactic algebra for semisimple Lie algebras, Adv. Math., Volume 124 (1996) no. 2, pp. 312-331 | Article | MR 1424313 | Zbl 0892.17009
[24] Extremal weight modules of quantum affine algebras, Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.) Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 343-369 | Article | MR 2074599 | Zbl 1088.17008
[25] Quantum Cohomology of (1997) (Lect. Notes, Massachusetts Institute of Technology, Cambridge, MA)
[26] Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin., Volume 15 (2002) no. 2, pp. 151-187 | Article | MR 1887233 | Zbl 1106.17305