We relate noncommutative Littlewood–Richardson coefficients of Bessenrodt–Luoto–van Willigenburg to classical Littlewood–Richardson coefficients via crystal reflection operators. A key role is played by the combinatorics of frank words.
Revised:
Accepted:
Published online:
Mots-clés : Crystal operator, Littlewood–Richardson coefficient, noncommutative symmetric function, symmetric function, Schur function.
Richmond, Edward 1; Tewari, Vasu 2
@article{ALCO_2021__4_1_145_0, author = {Richmond, Edward and Tewari, Vasu}, title = {Noncommutative {LR} coefficients and crystal reflection operators}, journal = {Algebraic Combinatorics}, pages = {145--162}, publisher = {MathOA foundation}, volume = {4}, number = {1}, year = {2021}, doi = {10.5802/alco.155}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.155/} }
TY - JOUR AU - Richmond, Edward AU - Tewari, Vasu TI - Noncommutative LR coefficients and crystal reflection operators JO - Algebraic Combinatorics PY - 2021 SP - 145 EP - 162 VL - 4 IS - 1 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.155/ DO - 10.5802/alco.155 LA - en ID - ALCO_2021__4_1_145_0 ER -
%0 Journal Article %A Richmond, Edward %A Tewari, Vasu %T Noncommutative LR coefficients and crystal reflection operators %J Algebraic Combinatorics %D 2021 %P 145-162 %V 4 %N 1 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.155/ %R 10.5802/alco.155 %G en %F ALCO_2021__4_1_145_0
Richmond, Edward; Tewari, Vasu. Noncommutative LR coefficients and crystal reflection operators. Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 145-162. doi : 10.5802/alco.155. https://alco.centre-mersenne.org/articles/10.5802/alco.155/
[1] Non-symmetric Macdonald polynomials and Demazure–Lusztig operators (2016) (https://arxiv.org/abs/1602.05153) | MR
[2] Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 157 (2018), pp. 70-108 | DOI | MR | Zbl
[3] Kohnert tableaux and a lifting of quasi-Schur functions, J. Combin. Theory Ser. A, Volume 156 (2018), pp. 85-118 | DOI | MR | Zbl
[4] A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, Canad. J. Math., Volume 66 (2014) no. 3, pp. 525-565 | DOI | MR | Zbl
[5] Skew quasisymmetric Schur functions and noncommutative Schur functions, Adv. Math., Volume 226 (2011) no. 5, pp. 4492-4532 | DOI | MR | Zbl
[6] Littlewood–Richardson rules for symmetric skew quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 137 (2016), pp. 179-206 | DOI | MR | Zbl
[7] The saturation conjecture (after A. Knutson and T. Tao), Enseign. Math. (2), Volume 46 (2000) no. 1-2, pp. 43-60 (With an appendix by William Fulton) | MR | Zbl
[8] Crystal bases. Representations and combinatorics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pages | DOI | MR | Zbl
[9] Schur operators and Knuth correspondences, J. Combin. Theory Ser. A, Volume 72 (1995) no. 2, pp. 277-292 | DOI | MR | Zbl
[10] A Littlewood–Richardson miscellany, European J. Combin., Volume 14 (1993) no. 3, pp. 191-212 | DOI | MR | Zbl
[11] Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages | MR | Zbl
[12] Noncommutative symmetric functions, Adv. Math., Volume 112 (1995) no. 2, pp. 218-348 | DOI | MR | Zbl
[13] Multipartite -partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) (Contemp. Math.), Volume 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289-317 | DOI | MR | Zbl
[14] Quasisymmetric Schur functions, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 463-490 | DOI | MR
[15] The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | DOI | MR | Zbl
[16] Skew Littlewood–Richardson rules from Hopf algebras, Int. Math. Res. Not. IMRN (2011) no. 6, pp. 1205-1219 | DOI | MR | Zbl
[17] Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978) (Quad. “Ricerca Sci.”), Volume 109, CNR, Rome, 1981, pp. 129-156 | MR | Zbl
[18] Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) (IMA Vol. Math. Appl.), Volume 19, Springer, New York, 1990, pp. 125-144 | MR | Zbl
[19] Group characters and algebra, Phil. Trans. A, Volume 233 (1934), pp. 99-141 | Zbl
[20] An algorithmic Littlewood–Richardson rule, J. Algebraic Combin., Volume 31 (2010) no. 2, pp. 253-266 | DOI | MR | Zbl
[21] Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, Cambridge, 2002, xiv+504 pages | DOI | MR | Zbl
[22] An introduction to quasisymmetric Schur functions. Hopf algebras, quasisymmetric functions, and Young composition tableaux, SpringerBriefs in Mathematics, Springer, New York, 2013, xiv+89 pages | DOI | MR | Zbl
[23] Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, Volume 177 (1995) no. 3, pp. 967-982 | DOI | MR | Zbl
[24] An explicit construction of type A Demazure atoms, J. Algebraic Combin., Volume 29 (2009) no. 3, pp. 295-313 | DOI | MR | Zbl
[25] -theoretic polynomials, Sém. Lothar. Combin., Volume 82B (2020), Paper no. 10, 12 pages | MR | Zbl
[26] Combinatorics and geometry of Littlewood–Richardson cones, European J. Combin., Volume 26 (2005) no. 6, pp. 995-1008 | DOI | MR | Zbl
[27] Key polynomials and a flagged Littlewood–Richardson rule, J. Combin. Theory Ser. A, Volume 70 (1995) no. 1, pp. 107-143 | DOI | MR | Zbl
[28] Plactification, J. Algebraic Combin., Volume 4 (1995) no. 4, pp. 331-351 | DOI | MR | Zbl
[29] A simple proof of the Littlewood–Richardson rule and applications, Discrete Math., Volume 193 (1998) no. 1-3, pp. 257-266 Selected papers in honor of Adriano Garsia (Taormina, 1994) | DOI | MR | Zbl
[30] The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR | Zbl
[31] La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976) (Lecture Notes in Math.), Volume 579, Springer-Verlag, Berlin-New York, 1977, pp. 59-113 | MR | Zbl
[32] Polynomial bases: positivity and Schur multiplication, Trans. Amer. Math. Soc., Volume 373 (2020) no. 2, pp. 819-847 | DOI | MR | Zbl
[33] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | DOI | MR | Zbl
[34] Backward jeu de taquin slides for composition tableaux and a noncommutative Pieri rule, Electron. J. Combin., Volume 22 (2015) no. 1, Paper no. 1.42, 50 pages | MR | Zbl
[35] A Murnaghan–Nakayama rule for noncommutative Schur functions, European J. Combin., Volume 58 (2016), pp. 118-143 | DOI | MR | Zbl
[36] On Schensted’s construction and the multiplication of Schur functions, Adv. in Math., Volume 30 (1978) no. 1, pp. 8-32 | DOI | MR | Zbl
[37] A geometric Littlewood-Richardson rule, Ann. of Math. (2), Volume 164 (2006) no. 2, pp. 371-421 (Appendix A written with A. Knutson) | DOI | MR | Zbl
[38] The Littlewood–Richardson rule, and related combinatorics, Interaction of combinatorics and representation theory (MSJ Mem.), Volume 11, Math. Soc. Japan, Tokyo, 2001, pp. 95-145 | DOI | MR | Zbl
Cited by Sources: