In the present paper, we show that many combinatorial and topological objects, such as maps, hypermaps, three-dimensional pavings, constellations and branched coverings of the two-sphere admit any given finite automorphism group. This enhances the already known results by Frucht, Cori–Machì, Širáň–Škoviera, and other authors. We also provide a more universal technique for showing that “any finite automorphism group is possible”, that is applicable to wider classes or, in contrast, to more particular sub-classes of said combinatorial and geometric objects. Finally, we show that any given finite automorphism group can be realised by sufficiently many non-isomorphic such entities (super-exponentially many with respect to a certain combinatorial complexity measure).
Revised:
Accepted:
Published online:
Keywords: automorphism, free product, free group, hypermap, ribbon graph, symmetry
Bottinelli, Rémi 1; Grave de Peralta, Laura 1; Kolpakov, Alexander 1
@article{ALCO_2020__3_2_483_0, author = {Bottinelli, R\'emi and Grave de Peralta, Laura and Kolpakov, Alexander}, title = {Telescopic groups and symmetries of combinatorial maps}, journal = {Algebraic Combinatorics}, pages = {483--508}, publisher = {MathOA foundation}, volume = {3}, number = {2}, year = {2020}, doi = {10.5802/alco.101}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.101/} }
TY - JOUR AU - Bottinelli, Rémi AU - Grave de Peralta, Laura AU - Kolpakov, Alexander TI - Telescopic groups and symmetries of combinatorial maps JO - Algebraic Combinatorics PY - 2020 SP - 483 EP - 508 VL - 3 IS - 2 PB - MathOA foundation UR - https://alco.centre-mersenne.org/articles/10.5802/alco.101/ DO - 10.5802/alco.101 LA - en ID - ALCO_2020__3_2_483_0 ER -
%0 Journal Article %A Bottinelli, Rémi %A Grave de Peralta, Laura %A Kolpakov, Alexander %T Telescopic groups and symmetries of combinatorial maps %J Algebraic Combinatorics %D 2020 %P 483-508 %V 3 %N 2 %I MathOA foundation %U https://alco.centre-mersenne.org/articles/10.5802/alco.101/ %R 10.5802/alco.101 %G en %F ALCO_2020__3_2_483_0
Bottinelli, Rémi; Grave de Peralta, Laura; Kolpakov, Alexander. Telescopic groups and symmetries of combinatorial maps. Algebraic Combinatorics, Volume 3 (2020) no. 2, pp. 483-508. doi : 10.5802/alco.101. https://alco.centre-mersenne.org/articles/10.5802/alco.101/
[1] Pavages tridimensionels, Bigre + Globule, Volume 61-62 (1989), pp. 5-15
[2] The asymptotic number of unlabelled regular graphs, J. Lond. Math. Soc., Volume 26 (1982), pp. 201-206 | DOI | MR | Zbl
[3] Enumeration of maps regardless of genus: geometric approach, Discrete Math., Volume 310 (2010) no. 6-7, pp. 1184-1203 | DOI | MR | Zbl
[4] Three-dimensional maps and subgroup growth (2017) (https://arxiv.org/abs/1712.01418)
[5] Free subgroups of free products and combinatorial hypermaps, Discrete Math., Volume 342 (2019) no. 5, pp. 1415-1433 | DOI | MR | Zbl
[6] Un code pour les graphes planaires et ses applications., Astérisque, 27, Société Mathématique de France (SMF), Paris, 1975, pp. 1-169 | Numdam | MR | Zbl
[7] Construction of maps with prescribed automorphism group, Theor. Comput. Sci., Volume 21 (1982) no. 1, pp. 91-98 | DOI | MR | Zbl
[8] Maps, hypermaps and their automorphisms: a survey, I, II, III, Expo. Math., Volume 10 (1992), p. 403-427, 429–447, 449–467 | MR | Zbl
[9] Asymptotic enumeration of reversible maps regardless of genus, Ars Math. Contemp., Volume 5 (2012), pp. 77-97 | DOI | MR | Zbl
[10] Automorphism groups of trees, Dokl. Akad. Nauk BSSR, Volume 13 (1969), pp. 1065-1067 | MR
[11] Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compos. Math., Volume 6 (1938), pp. 239-250 | MR | Zbl
[12] Realisation of groups as automorphism groups in permutational categories (2018) (https://arxiv.org/abs/1807.00547)
[13] Theory of maps on orientable surfaces, Proc. Lond. Math. Soc., Volume S3-37 (1978) no. 2, pp. 273-307 | DOI | MR | Zbl
[14] Stallings foldings and subgroups of free groups, J. Algebra, Volume 248 (2002) no. 2, pp. 608-668 | DOI | MR | Zbl
[15] Graphs on surfaces and their applications, Encycl. Math. Sci., 141, Springer, 2004 | MR | Zbl
[16] Enumeration of unrooted maps of a given genus, J. Comb. Theory, Ser. B, Volume 96 (2006) no. 5, pp. 706-729 | DOI | MR | Zbl
[17] Enumeration of unrooted hypermaps of a given genus, Discrete Math., Volume 310 (2010) no. 3, pp. 518-526 | DOI | MR | Zbl
[18] Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, x+142 pages | Zbl
[19] Orientable and non-orientable maps with given automorphism groups, Australas. J. Comb., Volume 7 (1993), pp. 47-53 | Zbl
[20] Merging in maps and in pavings, Theor. Comput. Sci., Volume 86 (1991) no. 2, pp. 205-232 | DOI | MR | Zbl
[21] Topology of finite graphs, Invent. Math., Volume 71 (1983) no. 3, pp. 551-565 | DOI | MR | Zbl
[22] Free subgroups of the free product of cyclic groups, Math. Comput., Volume 32 (1978) no. 144, pp. 1274-1280 | DOI | MR | Zbl
[23] What is a map?, New Directions in Graph Theory (Harary, F., ed.), Academic Press, New York, 1973, pp. 309-325 | Zbl
[24] Subgroup graph methods for presentations of finitely generated groups and the contractibility of associated simplicial complexes, J. Algebra, Volume 486 (2017), pp. 119-156 | DOI | MR | Zbl
Cited by Sources: