We compare two formulas for the class of a generic torus orbit closure in a Grassmannian, due to Klyachko and Berget-Fink. The naturally emerging combinatorial objects are semi-standard fillings we call 1-strip-less tableaux.
Revised:
Accepted:
Published online:
Keywords: torus orbit, Grassmannian, Littlewood-Richardson, Young tableau
Lian, Carl 1
@article{ALCO_2024__7_4_1103_0, author = {Lian, Carl}, title = {Torus orbit closures and 1-strip-less-tableaux}, journal = {Algebraic Combinatorics}, pages = {1103--1121}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.359}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.359/} }
TY - JOUR AU - Lian, Carl TI - Torus orbit closures and 1-strip-less-tableaux JO - Algebraic Combinatorics PY - 2024 SP - 1103 EP - 1121 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.359/ DO - 10.5802/alco.359 LA - en ID - ALCO_2024__7_4_1103_0 ER -
Lian, Carl. Torus orbit closures and 1-strip-less-tableaux. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1103-1121. doi : 10.5802/alco.359. https://alco.centre-mersenne.org/articles/10.5802/alco.359/
[1] Equivariant Chow classes of matrix orbit closures, Transform. Groups, Volume 22 (2017) no. 3, pp. 631-643 | DOI | MR | Zbl
[2] A Littlewood-Richardson rule for two-step flag varieties, Invent. Math., Volume 176 (2009) no. 2, pp. 325-395 | DOI | MR | Zbl
[3] Orbits of a maximal torus on a flag space, Funktsional. Anal. i Prilozhen., Volume 19 (1985) no. 1, pp. 77-78 | MR
[4] Toric varieties and flag spaces, Trudy Mat. Inst. Steklov., Volume 208 (1995), pp. 139-162 | MR
[5] Orbits in and equivariant quantum cohomology, Adv. Math., Volume 362 (2020), Paper no. 106951, 79 pages | DOI | MR | Zbl
[6] Degenerations of complete collineations and geometric Tevelev degrees of , 2023 | arXiv
[7] The permutahedral variety, mixed Eulerian numbers, and principal specializations of Schubert polynomials, Int. Math. Res. Not. IMRN (2023) no. 5, pp. 3615-3670 | DOI | MR | Zbl
[8] A matroid invariant via the -theory of the Grassmannian, Adv. Math., Volume 221 (2009) no. 3, pp. 882-913 | DOI | MR | Zbl
[9] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 208, Cambridge University Press, Cambridge, 2024, xvi+783 pages | MR
Cited by Sources: