In prior joint work with Lewis, we developed a theory of enriched set-valued -partitions to construct a -theoretic generalization of the Hopf algebra of peak quasisymmetric functions. Here, we situate this object in a diagram of six Hopf algebras, providing a shifted version of the diagram of -theoretic combinatorial Hopf algebras studied by Lam and Pylyavskyy. This allows us to describe new -theoretic analogues of the classical peak algebra. We also study the Hopf algebras generated by Ikeda and Naruse’s -theoretic Schur - and -functions, as well as their duals. Along the way, we derive several product, coproduct, and antipode formulas and outline a number of open problems and conjectures.
Revised:
Accepted:
Published online:
Keywords: combinatorial Hopf algebras, Malvenuto-Reutenauer Hopf algebra, peak algebra, peak quasisymmetric functions, K-theoretic symmetric functions, shifted tableaux
Marberg, Eric 1
@article{ALCO_2024__7_4_1123_0, author = {Marberg, Eric}, title = {Shifted combinatorial {Hopf} algebras from $K$-theory}, journal = {Algebraic Combinatorics}, pages = {1123--1156}, publisher = {The Combinatorics Consortium}, volume = {7}, number = {4}, year = {2024}, doi = {10.5802/alco.362}, language = {en}, url = {https://alco.centre-mersenne.org/articles/10.5802/alco.362/} }
TY - JOUR AU - Marberg, Eric TI - Shifted combinatorial Hopf algebras from $K$-theory JO - Algebraic Combinatorics PY - 2024 SP - 1123 EP - 1156 VL - 7 IS - 4 PB - The Combinatorics Consortium UR - https://alco.centre-mersenne.org/articles/10.5802/alco.362/ DO - 10.5802/alco.362 LA - en ID - ALCO_2024__7_4_1123_0 ER -
Marberg, Eric. Shifted combinatorial Hopf algebras from $K$-theory. Algebraic Combinatorics, Volume 7 (2024) no. 4, pp. 1123-1156. doi : 10.5802/alco.362. https://alco.centre-mersenne.org/articles/10.5802/alco.362/
[1] The peak algebra and the descent algebras of types and , Trans. Amer. Math. Soc., Volume 356 (2004) no. 7, pp. 2781-2824 | DOI | MR | Zbl
[2] Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compos. Math., Volume 142 (2006) no. 1, pp. 1-30 | DOI | MR | Zbl
[3] New results on the peak algebra, J. Algebraic Combin., Volume 23 (2006) no. 2, pp. 149-188 | DOI | MR | Zbl
[4] Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math., Volume 191 (2005) no. 2, pp. 225-275 | DOI | MR | Zbl
[5] The peak algebra and the Hecke-Clifford algebras at , J. Combin. Theory Ser. A, Volume 107 (2004) no. 1, pp. 1-19 | DOI | MR | Zbl
[6] Shifted quasi-symmetric functions and the Hopf algebra of peak functions, Discrete Math., Volume 246 (2002) no. 1-3, pp. 57-66 | DOI | MR | Zbl
[7] Peak quasisymmetric functions and Eulerian enumeration, Adv. Math., Volume 176 (2003) no. 2, pp. 248-276 | DOI | MR | Zbl
[8] Enriched set-valued -partitions and shifted stable Grothendieck polynomials, Math. Z., Volume 299 (2021) no. 3-4, pp. 1929-1972 | DOI | MR | Zbl
[9] A Littlewood-Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[10] Stable Grothendieck polynomials and -theoretic factor sequences, Math. Ann., Volume 340 (2008) no. 2, pp. 359-382 | DOI | MR | Zbl
[11] Pieri rules for the -theory of cominuscule Grassmannians, J. Reine Angew. Math., Volume 668 (2012), pp. 109-132 | DOI | MR | Zbl
[12] Expanding -theoretic Schur -functions, Algebr. Comb., Volume 6 (2023) no. 6, pp. 1419-1445 | DOI | MR | Zbl
[13] -theoretic Schubert calculus for and jeu de taquin for shifted increasing tableaux, J. Reine Angew. Math., Volume 690 (2014), pp. 51-63 | DOI | MR | Zbl
[14] Introduction to the theory of formal groups, Pure and Applied Mathematics, 20, Marcel Dekker, Inc., New York, 1973, xii+265 pages | MR
[15] Grothendieck polynomials and the Yang-Baxter equation, Formal power series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ (1994), pp. 183-189 | MR
[16] Hopf Algebras in Combinatorics, 2014 | arXiv
[17] Shifted Hecke insertion and -theory of , Sém. Lothar. Combin., Volume 78B (2017), Paper no. 14, 12 pages | MR | Zbl
[18] Crystal structures for canonical Grothendieck functions, Algebr. Comb., Volume 3 (2020) no. 3, pp. 727-755 | DOI | Numdam | MR | Zbl
[19] Structure of the peak Hopf algebra of quasi-symmetric functions, preprint, 2002
[20] Colored posets and colored quasisymmetric functions, Ann. Comb., Volume 14 (2010) no. 2, pp. 251-289 | DOI | MR | Zbl
[21] -theoretic analogues of factorial Schur - and -functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR | Zbl
[22] Neutral-fermionic presentation of the -theoretic -function, J. Algebraic Combin., Volume 55 (2022) no. 2, pp. 629-662 | DOI | MR | Zbl
[23] A lift of Schur’s Q-functions to the peak algebra, J. Combin. Theory Ser. A, Volume 135 (2015), pp. 268-290 | DOI | MR | Zbl
[24] Combinatorial Hopf algebras and -homology of Grassmannians, Int. Math. Res. Not. IMRN (2007) no. 24, Paper no. rnm125, 48 pages | DOI | MR | Zbl
[25] Combinatorial aspects of the -theory of Grassmannians, Ann. Comb., Volume 4 (2000) no. 1, pp. 67-82 | DOI | MR | Zbl
[26] Combinatorial formulas for shifted dual stable Grothendieck polynomials, Forum Math. Sigma, Volume 12 (2024), Paper no. e22, 45 pages | DOI | MR | Zbl
[27] Toward a polynomial basis of the algebra of peak quasisymmetric functions, J. Algebraic Combin., Volume 44 (2016) no. 4, pp. 931-946 | DOI | MR | Zbl
[28] An introduction to quasisymmetric Schur functions: Hopf algebras, quasisymmetric functions, and Young composition tableaux, SpringerBriefs in Mathematics, Springer, New York, 2013, xiv+89 pages | DOI | MR
[29] Produits et coproduits des fonctions quasi-symétriques et de l’algèbre des descentes, Ph. D. Thesis, Université du Québec à Montréal, Montréal (1993)
[30] Key and Lascoux polynomials for symmetric orbit closures, 2023 | arXiv
[31] Linear compactness and combinatorial bialgebras, Electron. J. Combin., Volume 28 (2021) no. 3, Paper no. 3.9, 47 pages | DOI | MR | Zbl
[32] Shifted insertion algorithms for primed words, Comb. Theory, Volume 3 (2023) no. 3, Paper no. 14, 80 pages | MR | Zbl
[33] -theory formulas for orthogonal and symplectic orbit closures, Adv. Math., Volume 372 (2020), Paper no. 107299, 43 pages | DOI | MR | Zbl
[34] On some properties of symplectic Grothendieck polynomials, J. Pure Appl. Algebra, Volume 225 (2021) no. 1, Paper no. 106463, 22 pages | DOI | MR | Zbl
[35] Universal factorial Schur -functions and their duals, 2018 | arXiv
[36] Polynomial realizations of some trialgebras, 18th Formal Power Series and Algebraic Combinatorics (FPSAC’06), San Diego, USA (2006) no. 1, pp. 243-254 https://garsia.math.yorku.ca/fpsac06/papers/12.pdf
[37] The peak algebra of the symmetric group, J. Algebraic Combin., Volume 17 (2003) no. 3, pp. 309-322 | DOI | MR | Zbl
[38] Antipode formulas for some combinatorial Hopf algebras, Electron. J. Combin., Volume 23 (2016) no. 4, Paper no. 4.30, 32 pages | DOI | MR | Zbl
[39] Genomic tableaux, J. Algebraic Combin., Volume 45 (2017) no. 3, pp. 649-685 | DOI | MR | Zbl
[40] Enriched -partitions and peak algebras, Adv. Math., Volume 209 (2007) no. 2, pp. 561-610 | DOI | MR | Zbl
[41] The peak algebra of the symmetric group revisited, Adv. Math., Volume 192 (2005) no. 2, pp. 259-309 | DOI | MR | Zbl
[42] Enriched -partitions, Trans. Amer. Math. Soc., Volume 349 (1997) no. 2, pp. 763-788 | DOI | MR | Zbl
[43] Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl
[44] Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Combin. Theory Ser. A, Volume 161 (2019), pp. 453-485 | DOI | MR | Zbl
Cited by Sources: